• cad不等比例缩放 > upimg/soft/AutoCADayz_柴油机缸体模具CAD技术.DOC
  • upimg/soft/AutoCADayz_柴油机缸体模具CAD技术.DOC

    免费下载 下载该文档 文档格式:DOC   更新时间:2011-10-29   下载次数:0   点击次数:1

     

     

     

     

    柴油机缸体模具CAD技术

     

    用Pro/ENGINEER进行柴油机缸体铸件模具的设计,借助三维实体复合建模技术的可视性、可检测性及可分析性,解决了模具设计中的疑难问题。本文以513缸体的设计为例,具体介绍了应用CAD技术进行铸件建模、合理分配砂芯和设计模具的方法和技巧。三维CAD技术给制造业带来的方便令传统的二维设计望尘莫及。 随着时代的进步,科技的发展和CAD技术的应用。模具行业由传统二维设计向三维设计转变,应用CAD技术进行三维模具设计,不仅缩短了设计周期,而且提高了模具精度,使模具结构更趋合理。同时应用CAD设计的模具在以后的铸件试制生产中,减少了模具修改的次数,减少了试制费用,节省了新产品的试制时间。以Pro/ENGINEER软件为例,我们来比较传统二维设计和三维设计所用的时间。

    图1 使用二维软件进行机械设计

    图2 使用Pro/ENGINEER三维软件进行机械设计

    图1与图2 是国内某3C产品制造公司设计开发的流程与花费的时间。很显然,使用三维软件进行设计比传统设计大约节省一半的时间。 应用传统二维设计方法设计的缸体模具的铸件肥大,尺寸精度低,加工后的产品零件外表不美观且重量较大,模具在试制时反复修改,影响模具寿命,无形中增加了新产品的开发费用。另有一些芯盒特别是热芯盒,用传统的设计方法设计,须用普通机床无法加工,如果改用数控加工,则需要进行人工代码编程,费时费力。 综上所述,应用三维CAD 技术开发设计缸体模具是一种先进方法,下面以513缸体为例,具体介绍应用CAD技术进行铸件建模、合理分配砂芯和设计模具的方法和技巧。 一、 铸件模型的建立 分析缸体零件的二维产品图纸,找出其主体构架,运用CAD技术,首先建立零件的主体构架模型,然后再建立那些在主体构架(主模型)之上的功能小模型,最后,将这些主体模型与功能小模型作布尔运算,即可得到缸体零件的三维实体几何模型。对几何模型进行铸造工艺处理:加工面上添加加工余量,尖锐的棱角作圆角,设置冷加工使用的定位夹紧工艺凸台,对整个几何模型进行比例缩放(根据铸造环境和铸造方法及铸件材质的不同而制定的收缩率),本设计是将几何模型放大1.008倍,如图3所示。

    图3 用Pro/ENGINEER三维软件设计的BF8L513缸体铸件模型

    二、 铸件模型的型、芯设计 传统的铸造外模模具设计和芯盒模具设计是大家所熟悉的。这种老方法制作出的外模模具和芯盒模具,由于二维工程图纸的抽象和型芯模具设计制作的分离性,很难使他们组装后体现出缸体二维工程图纸所要求的精确效果,继而影响产品的整体性能。 运用三维实体复合建模技术,可以解决传统模具设计难以解决的问题。首先是模具型腔的精度问题,在进行铸件模型的型芯分离时,需采取以下步骤: (1)建立一个在三维空间能够完全包容铸件模型的实体方体; (2)用缸体铸件模型作为工具实体,与目标实体方体作布尔减运算,得到一个初始的型芯组合实体; (3)用软件中的剪切功能将芯头与外型相连的部位切成分离的两个实体(无特征参数),即得到了砂芯组合体和铸型的反模; (4)根据砂芯的成型工艺将砂芯的组合体合理分配成若干小砂芯,分别制芯。(见图4)

    图4 计算机三维模拟砂芯组装图

    其中1为端芯;2为第一缸芯;3为第二缸芯;4为第三缸芯;5为第四缸芯,采用手工树脂砂芯;6为传动箱芯,采用热芯盒制芯。组装顺序为:依次按标号顺序将砂芯放到组芯胎具上,用螺杆穿起来拧紧。 (5)建立一个同(1)中描述的一样的实体方体,以上、下模分型面为界限将该方体分割成两部分,以(3)中得到的铸型外模的反模作为工具实体,将其对应的一半方体实体作为目标实体,进行布尔减运算,即可得到外型上模型和外型下模型的初始原形(见图5)。

    图5 上、下模型

    三、 上、下模板的形成及铸型模拟检测 利用布尔运算生成的上、下模型,按照造型设备的规格和连接方式进行排版,做出工装连接部分。按造型工艺的要求在模具适当部位安装数量和大小不等的排气柱(见图6),并在与组合砂芯的配合部位添加芯头成型块(见图7)和砂芯排气柱,这样即可得到生产中应用的模具模型(见图6、图7)。

    图6 上模板

    图7 下模板

    从以上介绍可以看出,造型模具和砂芯模具都是从同一个铸件模型上获得的,其内部型腔和外部形状的对应精确度是很高的(可精确到0.001mm以上),这样就实现了铸件外部表面及内部型腔在模具上的精确参数转换,以及内部型腔砂芯的合理分配。 同样运用布尔减运算对上、下模板进行运算,形成上、下型腔(见图8、图9)。

    图8 上型腔

    图9 下型腔

    运用Pro/ENGINEER中的装配模块,将组合后的整体砂芯调入并装配到相对应的芯座上,这样就组合成了一个完整的模拟铸型(见图10)。如果你想了解铸型中各处壁厚的话,可以调用Pro/ENGINEER中的剖切功能在你想看的位置进行剖切。这时,如果某个部位的尺寸形状与图纸不符,可以对设计进行检测修改;而且铸造工艺参数,通过剖切尺寸检查认为不合理可以进行修正。而传统设计依靠浇注铸件进行铸件解剖检测,在合箱时用橡皮泥进行壁厚检查,其结果会造成生产周期长、试制费用高、尺寸精度差、表面质量差等弊端。

    下一页

  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 DOC格式下载
  • 您可能感兴趣的
  • cad中怎样缩放比例  cad比例缩放  cad怎么按比例缩放  cad怎么缩放比例  cad比例缩放命令  cad比例缩放快捷键  cad缩放命令  cad实时缩放快捷键  cad缩放快捷键