• ve修改器汉化版.rar > NaveBayesLearn(examples)
  • NaveBayesLearn(examples)

    免费下载 下载该文档 文档格式:PDF   更新时间:2004-10-06   下载次数:0   点击次数:2
    文档基本属性
    文档语言:English
    文档格式:pdf
    文档作者:peter taylor
    关键词:
    主题:
    备注:
    点击这里显示更多文档属性
    P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005 P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021 So, vNB = n
    Nave Bayes: Subtleties
    2. What if none of the training instances with target value vj have attribute ai P(ai|vj) = 0, and… P(vj) #i P(ai |vj) = 0 Solution is Bayesian estimate: P(ai|vj) = (nc + mp)/(n + m) where

    Learning to Classify Text
    Why Learn which news articles are of interest Learn to classify web pages by topic Nave Bayes is among most effective algorithms What attributes shall we use to represent text documents
    n is number of training examples for which v = vj, nc number of examples for which v = vj and a = ai p is prior estimate for P(ai|vj) m is weight given to prior (i.e., number of "virtual" examples)
    Learning to Classify Text
    Target concept Interesting : Document ! { +, - } 1. Represent each document by vector of words one attribute per word position in document 2. Learning: Use training examples to estimate P(+) P(-) P(doc| +) P(doc| -)
    Nave Bayes for Text
    Nave Bayes conditional independence assumption P(doc |vj) = #i=1length(doc) P(ai =wk|vj) where P(ai =wk|vj) is probability that word in position i is wk, given vj One more assumption: P(ai =wk|vj) = P(am =wk|vj) $i, m "Bag of words" assumption.
    Learning Algorithm
    LEARN_NAVE_BAYES_TEXT(Examples, V ) 1. collect all words and other tokens that occur in Examples Vocabulary " all distinct words and other tokens in Examples 2. Calculate the required P(vj) and P(wk|vj) probability terms For each target value vj in V do
    Classification Algorithm
    CLASSIFY_NAVE_BAYES_TEXT (Doc) positions " all word positions in Doc that contain tokens found in Vocabulary Return vNB, where
    – docsj " subset of Examples for which the target value is vj – P(vj) " |docsj|/|Examples| – Textj " a single document created by concatenating all members of docsj – n " total number of words in Textj (counting duplicate words multiple times) ("tokens" vs. "tokens") – for each word wk in Vocabulary

    上一页下一页

  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 PDF格式下载
  • 您可能感兴趣的
  • ve过非法修改器.rar  ve修改器汉化版  ve修改器汉化版下载  ve修改器绿色汉化版  cfve修改器汉化版  sd卡id修改器.rar  1942cdke修改器.rar  ibdh2修改器.rar  rtw人物修改器.rar  修改器汉化版