P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005 P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021 So, vNB = n
Nave Bayes: Subtleties
2. What if none of the training instances with target value vj have attribute ai P(ai|vj) = 0, and… P(vj) #i P(ai |vj) = 0 Solution is Bayesian estimate: P(ai|vj) = (nc + mp)/(n + m) where
Learning to Classify Text
Why Learn which news articles are of interest Learn to classify web pages by topic Nave Bayes is among most effective algorithms What attributes shall we use to represent text documents
n is number of training examples for which v = vj, nc number of examples for which v = vj and a = ai p is prior estimate for P(ai|vj) m is weight given to prior (i.e., number of "virtual" examples)
Learning to Classify Text
Target concept Interesting : Document ! { +, - } 1. Represent each document by vector of words one attribute per word position in document 2. Learning: Use training examples to estimate P(+) P(-) P(doc| +) P(doc| -)
Nave Bayes for Text
Nave Bayes conditional independence assumption P(doc |vj) = #i=1length(doc) P(ai =wk|vj) where P(ai =wk|vj) is probability that word in position i is wk, given vj One more assumption: P(ai =wk|vj) = P(am =wk|vj) $i, m "Bag of words" assumption.
Learning Algorithm
LEARN_NAVE_BAYES_TEXT(Examples, V ) 1. collect all words and other tokens that occur in Examples Vocabulary " all distinct words and other tokens in Examples 2. Calculate the required P(vj) and P(wk|vj) probability terms For each target value vj in V do
Classification Algorithm
CLASSIFY_NAVE_BAYES_TEXT (Doc) positions " all word positions in Doc that contain tokens found in Vocabulary Return vNB, where
– docsj " subset of Examples for which the target value is vj – P(vj) " |docsj|/|Examples| – Textj " a single document created by concatenating all members of docsj – n " total number of words in Textj (counting duplicate words multiple times) ("tokens" vs. "tokens") – for each word wk in Vocabulary
- ve修改器汉化版.rar > NaveBayesLearn(examples)
-
NaveBayesLearn(examples)
下载该文档 文档格式:PDF 更新时间:2004-10-06 下载次数:0 点击次数:2文档基本属性 文档语言: English 文档格式: pdf 文档作者: peter taylor 关键词: 主题: 备注: 点击这里显示更多文档属性 经理: 单位: umb gcoe 分类: 创建时间: 上次保存者: 修订次数: 编辑时间: 文档创建者: 修订: 加密标识: 幻灯片: 段落数: 字节数: 备注: 演示格式: 上次保存时间:
- 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
- PDF格式下载
- 更多文档...
-
上一篇:关于做好防范应对台风工作
下一篇:Veintemillas-Verdaguer
点击查看更多关于ve修改器汉化版.rar的相关文档
- 您可能感兴趣的
- ve过非法修改器.rar ve修改器汉化版 ve修改器汉化版下载 ve修改器绿色汉化版 cfve修改器汉化版 sd卡id修改器.rar 1942cdke修改器.rar ibdh2修改器.rar rtw人物修改器.rar 修改器汉化版
- 大家在找
-
- · 中学生安全教育黑板报
- · 贵州农村信用社
- · 证券公司内部控制指引
- · 一去二三里ppt课件
- · focke700
- · 高维函数模型偏导数
- · 内蒙古资产评估协会
- · 无线电子门铃原理
- · 出口制冷压缩机
- · 厂房平面图
- · 台州企业联系方式xls
- · 大众汽车变速器大连
- · 风机失速的概念
- · 活塞的机械加工工艺设计及夹具设计
- · 自考精密加工与特种加工试卷与答案
- · cxa1691
- · 一本书读懂中国史txt
- · 认识物体课件
- · 中文cad绘图软件下载
- · 启用javascript功能
- · 2011驾校c1模拟题
- · 北京东直门中医院网站
- · 山东定额测定费执行
- · 江西财经大学考研论坛
- · 正版xp序列号替换器
- · 颅脑损伤ppt
- · 周末同居床电影土豆网
- · 计算机操作员
- · 90后啤酒门事件
- · 电工证复审时间
- 赞助商链接