329366-002 Intel? Core? i7 Processor Family for LGA2011 Socket Datasheet – Volume 1 of 2 Supporting Desktop Intel? Core? i7-4960X Extreme Edition Processor Series for the LGA2011 Socket Supporting Desktop Intel? Core? i7-49xx and i7-48xx Processor Series for the LGA2011 Socket May 2014 2 Datasheet INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH Intel? PRODUCTS. NO LICENSE, Express* OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY Express* OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. No computer system can provide absolute security under all conditions. Intel? Trusted Execution Technology (Intel? TXT) requires a computer system with Intel? Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible measured launched environment (MLE). The MLE could consist of a virtual machine monitor, an OS or an application. In addition, Intel TXT requires the system to contain a TPM v1.2, as defined by the Trusted Computing Group and specific software for some uses. For more information, see http://www.intel.com/technology/security/ Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For more information including details on which processors support HT Technology, see http://www.intel.com/products/ht/hyperthreading_more.htm. Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality. Intel? Virtualization Technology requires a computer system with an enabled Intel? processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor. Intel? Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see http://www.intel.com/technology/turboboost/. 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel? 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information. Δ Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor%5Fnumber/ for details. I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel. Implementations of the I2 C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation. Intel, Intel, Enhanced Intel? SpeedStep? Technology, Intel? 64 Technology, Intel? Virtualization Technology (Intel? VT), Intel? VT-d, Intel? Turbo Boost Technology, Intel? Hyper-Threading Technology (Intel? HT Technology), Intel? Streaming SIMD Extensions (Intel? SSE) Intel Core, and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands may be claimed as the property of others. Copyright ? 2014, Intel Corporation. All rights reserved. Datasheet 3 Table of Contents 1 Introduction 8 1.1 Processor Feature Details 9 1.2 Supported Technologies 10 1.3 Interfaces 10 1.3.1 System Memory Support 10 1.3.2 PCI Express*11 1.3.3 Direct Media Interface Gen 2 (DMI2)12 1.3.4 Platform Environment Control Interface (PECI)13 1.4 Power Management Support 13 1.4.1 Processor Package and Core States.13 1.4.2 System States Support 13 1.4.3 Memory Controller.13 1.4.4 PCI Express*13 1.5 Thermal Management Support 13 1.6 Package Summary.14 1.7 Terminology 14 1.8 Related Documents 16 2 Interfaces.18 2.1 System Memory Interface 18 2.1.1 System Memory Technology Support 18 2.1.2 System Memory Timing Support.18 2.2 PCI Express* Interface.19 2.2.1 PCI Express* Architecture 19 2.2.2 PCI Express* Configuration Mechanism 20 2.3 Direct Media Interface 2 (DMI2) / PCI Express* Interface 21 2.3.1 DMI2 Error Flow.21 2.3.2 Processor / PCH Compatibility Assumptions.21 2.3.3 DMI2 Link Down.21 2.4 Platform Environment Control Interface (PECI)21 3 Technologies 23 3.1 Intel? Virtualization Technology (Intel? VT)23 3.1.1 Intel? VT-x Objectives 23 3.1.2 Intel? VT-x Features 24 3.1.3 Intel? VT-d Objectives.24 3.1.4 Intel? Virtualization Technology Processor Extensions 25 3.2 Security Technologies 26 3.2.1 Intel? Advanced Encryption Standard New Instructions (Intel? AES-NI) Instructions 26 3.2.2 Execute Disable Bit.26 3.3 Intel? Hyper-Threading Technology (Intel? HT Technology)26 3.4 Intel? Turbo Boost Technology 27 3.4.1 Intel? Turbo Boost Operating Frequency 27 3.5 Enhanced Intel? SpeedStep? Technology.27 3.6 Intel? Advanced Vector Extensions (Intel? AVX)28 4 Power Management.30 4.1 Advanced Configuration and Power Interface (ACPI) States Supported 30 4.1.1 System States 30 4.1.2 Processor Package and Core States.30 4.1.3 Integrated Memory Controller (IMC) States.32 4.1.4 Direct Media Interface Gen 2 (DMI2) / PCI Express* Link States 32 4.1.5 G, S, and C State Combinations 33 4 Datasheet 4.2 Processor Core / Package Power Management 33 4.2.1 Enhanced Intel? SpeedStep? Technology 33 4.2.2 Low-Power Idle States.34 4.2.3 Requesting Low-Power Idle States 35 4.2.4 Core C-states 36 4.2.5 Package C-States 37 4.2.6 Package C-State Power Specifications.40 4.3 System Memory Power Management 40 4.3.1 CKE Power-Down.41 4.3.2 Self-Refresh.41 4.3.3 DRAM I/O Power Management.42 4.4 Direct Media Interface 2 (DMI2) / PCI Express* Power Management 42 5 Thermal Management Specifications 43 6 Signal Descriptions 44 6.1 System Memory Interface Signals 44 6.2 PCI Express* Based Interface Signals 45 6.3 Direct Media Interface Gen 2 (DMI2) / PCI Express* Port 0 Signals.47 6.4 Platform Environment Control Interface (PECI) Signal.47 6.5 System Reference Clock Signals 47 6.6 Joint Test Action Group (JTAG) and Test Access Point (TAP) Signals.47 6.7 Serial Voltage Identification (SVID) Signals 48 6.8 Processor Asynchronous Sideband and Miscellaneous Signals.48 6.9 Processor Power and Ground Supplies 51 7 Electrical Specifications 52 7.1 Processor Signaling.52 7.1.1 System Memory Interface Signal Groups.52 7.1.2 PCI Express* Signals.52 7.1.3 Direct Media Interface Gen 2 (DMI2) / PCI Express* Signals.52 7.1.4 Platform Environmental Control Interface (PECI)53 7.1.5 System Reference Clocks (BCLK{0/1}_DP, BCLK{0/1}_DN)53 7.1.6 Joint Test Action Group (JTAG) and Test Access Port (TAP) Signals.54 7.1.7 Processor Sideband Signals.54 7.1.8 Power, Ground and Sense Signals 54 7.1.9 Reserved or Unused Signals 59 7.2 Signal Group Summary.59 7.3 Power-On Configuration (POC) Options 62 7.4 Absolute Maximum and Minimum Ratings.62 7.4.1 Storage Conditions Specifications.63 7.5 DC Specifications.64 7.5.1 Voltage and Current Specifications 64 7.5.2 Die Voltage Validation 66 7.5.3 Signal DC Specifications 67 8 Processor Land Listing 72 9 Package Mechanical Specifications.115 10 Boxed Processor Specifications.116 10.1 Introduction.116 10.2 Boxed Processor Contents.116 Datasheet 5 Figures 1-1 Processor Platform Block Diagram Example.9 1-2 PCI Express* Lane Partitioning and Direct Media Interface Gen 2 (DMI2)12 2-1 PCI Express* Layering Diagram.19 2-2 Packet Flow through the Layers.20 4-1 Idle Power Management Breakdown of the Processor Cores.34 4-2 Thread and Core C-State Entry and Exit 34 4-3 Package C-State Entry and Exit 38 7-1 Input Device Hysteresis 53 7-2 Voltage Regulator (VR) Power-State Transitions 57 7-3 VCC Overshoot Example Waveform.66 Tables 1-1 Terminology 14 1-2 Processor Documents.16 1-3 Public Specifications 17 4-1 System States 30 4-2 Package C-State Support.31 4-3 Core C-State Support.31 4-4 System Memory Power States.32 4-5 DMI2 / PCI Express* Link States 32 4-6 G, S and C State Combinations 33 4-7 Coordination of Thread Power States at the Core Level.35 4-8 P_LVLx to MWAIT Conversion.35 4-9 Coordination of Core Power States at the Package Level 38 4-10 Package C-State Power Specifications 40 6-1 Memory Channel DDR0, DDR1, DDR2, DDR3.44 6-2 Memory Channel Miscellaneous 45 6-3 PCI Express* Port 1 Signals 45 6-4 PCI Express* Port 2 Signals 45 6-5 PCI Express* Port 3 Signals 46 6-6 PCI Express* Miscellaneous Signals 46 6-7 DMI2 and PCI Express Port 0 Signals 47 6-8 Platform Environment Control Interface (PECI) Signals 47 6-9 System Reference Clock (BCLK{0/1}) Signals 47 6-10 Joint Test Action Group (JTAG) and Test Access Port (TAP) Signals 47 6-11 Serial Voltage Identification (SVID) Signals.48 6-12 Processor Asynchronous Sideband Signals 48 6-13 Miscellaneous Signals 50 6-14 Power and Ground Signals.51 7-1 Power and Ground Lands.54 7-2 Serial Voltage Identification (SVID) Address Usage 57 7-3 VR12.0 Reference Code Voltage Identification (VID) Table 58 7-4 Signal Description Buffer Types 59 7-5 Signal Groups 59 7-6 Signals with On-Die Termination 62 7-7 Power-On Configuration Option Lands 62 7-8 Processor Absolute Minimum and Maximum Ratings.63 7-9 Storage Condition Ratings 63 6 Datasheet 7-10 Voltage Specifications.64 7-11 Current Specifications 65 7-12 VCC Overshoot Specifications 66 7-13 DDR3 and DDR3L Signal DC Specifications 67 7-14 PECI DC Specifications 68 7-15 System Reference Clock (BCLK{0/1}) DC Specifications.68 7-16 SMBus DC Specifications.69 7-17 Joint Test Action Group (JTAG) and Test Access Point (TAP) Signals DC Specifications.69 7-18 Serial VID Interface (SVID) DC Specifications 69 7-19 Processor Asynchronous Sideband DC Specifications.70 7-20 Miscellaneous Signals DC Specifications 70 8-1 Land List by Land Name 73 8-2 Land List by Land Number.94 Datasheet 7 Revision History § Revision Number Description Date 001 ? Initial release September 2013 002 ? Chapter , "1 Introduction 9," — Section 1.3.1, "System Memory Support" corrected DDR3 DRAM technologies supported May 2014 Introduction 8 Datasheet 1 Introduction The Intel? Core? i7 processor family for LGA2011 socket are the next generation of 64-bit, multi-core desktop processors built on 22-nanometer process technology. Based on the low-power/high-performance Intel? Core? i7 processor micro-architecture, the processor is designed for a two-chip platform instead of to the traditional three-chip platforms (processor, Memory Controller Hub, and Platform Controller Hub). The two- chip platform consists of a processor and the Platform Controller Hub (PCH) enabling higher performance, easier validation, and improved x-y footprint. Refer to Figure 1-1 for a platform block diagram. The processor features per socket, up to 40 lanes of PCI Express* 3.0 links capable of 8.0 GT/s, and 4 lanes of DMI2/PCI Express* 2.0 interface with a peak transfer rate of 5.0 GT/s. The processor supports up to 46 bits of physical address space and a 48-bit virtual address space. Included in this family of processors is an integrated memory controller (IMC) and integrated I/O (IIO) (such as PCI Express* and DMI2) on a single silicon die. This single die solution is known as a monolithic processor. The Datasheet - Volume 1 covers DC electrical specifications, land and signal definitions, differential signaling specifications, interface functional descriptions, power management descriptions, and additional feature information pertinent to the implementation and operation of the processor on its platform. Volume 2 provides register information. Refer to the Related Documents section for access to Volume 2. Note: Throughout this document, the Intel? Core? i7 processor family for LGA2011 socket may be referred to as "processor". Note: Throughout this document, the Intel? Core? i7-49xx processor series for the LGA2011 socket refers t the Intel? Core? i7-4930K processor. Note: Throughout this document, the Intel? Core? i7-48xx processor series for the LGA2011 socket refers to the Intel? Core? i7-4820K processor. Note: Throughout this document, the Intel? X79 Chipset Platform Controller Hub may be referred to as "PCH". Note: Some processor features are not available on all platforms. Refer to the processor specification update for details. Datasheet 9 Introduction 1.1 Processor Feature Details ? Up to 6 execution cores ? Each core supports two threads (Intel? Hyper-Threading Technology), up to 12 threads per socket ? 32KB instruction and 32-KB data first-level cache (L1) for each core ? 256KB shared instruction/data mid-level (L2) cache for each core ? Up to 15MB last level cache (LLC): up to 2.5MB per core instruction/data last level cache (LLC), shared among all cores Figure 1-1. Processor Platform Block Diagram Example Processor DDR3 DDR3 DDR3 DDR3 PCH DMI2 PCIe* PCIe* ... SATA ethernet BIOS x4 x1 PCIe* x16 PCIe* x8 PCIe* x16 Introduction 10 Datasheet 1.2 Supported Technologies ? Intel? Virtualization Technology (Intel? VT) ? Intel? Virtualization Technology (Intel? VT) for Directed I/O (Intel? VT-d) ? Intel? Virtualization Technology (Intel? VT) Processor Extensions ? Intel? 64 Architecture ? Intel? Streaming SIMD Extensions 4.1 (Intel? SSE4.1) ? Intel? Streaming SIMD Extensions 4.2 (Intel? SSE4.2) ? Intel? Advanced Vector Extensions (Intel? AVX) ? Intel? AVX Floating Point Bit Depth Conversion (Float 16) ? Intel? Hyper-Threading Technology ? Execute Disable Bit ? Intel? Turbo Boost Technology ? Enhanced Intel? SpeedStep? Technology 1.3 Interfaces 1.3.1 System Memory Support ? Supports four DDR3 channels ? Unbuffered DDR3 DIMMs supported ? Independent channel mode or lockstep mode ? Data burst length of eight cycles for all memory organization modes ? Memory DDR3 data transfer rates of 1066 MT/s, 1333 MT/s, 1600 MT/s, and 1866 MT/s ? 64-bit wide channels ? DDR3 standard I/O Voltage of 1.5 V ? 1-Gb, 2-Gb and 4-Gb DDR3 DRAM technologies supported for these devices: — UDIMMs x8, x16 ? Up to 4 ranks supported per memory channel, 1, 2, or 4 ranks per DIMM ? Open with adaptive idle page close timer or closed page policy ? Per channel memory test and initialization engine can initialize DRAM to all logical zeros or a predefined test pattern ? Minimum memory configuration: independent channel support with 1 DIMM populated ? Command launch modes of 1n/2n ? Improved Thermal Throttling ? Memory thermal monitoring support for DIMM temperature using two memory signals, MEM_HOT_C{01/23}_N Datasheet 11 Introduction 1.3.2 PCI Express* ? The PCI Express* port(s) are fully-compliant with the PCI Express* Base Specification, Revision 3.0 (PCIe 3.0) ? Support for PCI Express* 3.0 (8.0 GT/s), 2.0 (5.0 GT/s), and 1.0 (2.5 GT/s) ? Up to 40 lanes of PCI Express* interconnect for general purpose PCI Express* devices at PCIe* 3.0 speeds that are configurable for up to 10 independent ports ? 4 lanes of PCI Express* at PCIe* 2.0 speeds when not using DMI2 port (Port 0), also can be downgraded to x2 or x1 ? Negotiating down to narrower widths is supported, see Figure 1-2: — x16 port (Port 2 and Port 3) may negotiate down to x8, x4, x2, or x1 — x8 port (Port 1) may negotiate down to x4, x2, or x1 — x4 port (Port 0) may negotiate down to x2, or x1 — When negotiating down to narrower widths, there are caveats as to how lane reversal is supported ? Address Translation Services (ATS) 1.0 support ? Hierarchical PCI-compliant configuration mechanism for downstream devices ? Traditional PCI style traffic (asynchronous snooped, PCI ordering) ? PCI Express* extended configuration space. The first 256 bytes of configuration space aliases directly to the PCI compatibility configuration space. The remaining portion of the fixed 4-KB block of memory-mapped space above that (starting at 100h) is known as extended configuration space. ? PCI Express* Enhanced Access Mechanism – accessing the device configuration space in a flat memory mapped fashion ? Automatic discovery, negotiation, and training of link out of reset ? Supports receiving and decoding 64 bits of address from PCI Express*: — Memory transactions received from PCI Express* that go above the top of physical address space (when Intel VT-d is enabled, the check would be against the translated Host Physical Address (HPA)) are reported as errors by the processor. — Outbound access to PCI Express* will always have address bits 63:46 cleared ? Re-issues Configuration cycles that have been previously completed with the Configuration Retry status ? Power Management Event (PME) functions ? Message Signaled Interrupt (MSI and MSI-X) messages ? Degraded Mode support and Lane Reversal support ? Static lane numbering reversal and polarity inversion support ? Support for PCIe* 3.0 atomic operation, PCIe 3.0 optional extension on atomic read-modify-write mechanism Introduction 12 Datasheet 1.3.3 Direct Media Interface Gen 2 (DMI2) ? Serves as the chip-to-chip interface to the PCH ? The DMI2 port supports x4 link width and only operates in a x4 mode when in DMI2 ? Operates at PCI Express* 1.0 or 2.0 speeds ? Transparent to software ? Processor and peer-to-peer writes and reads with 64-bit address support ? APIC and Message Signaled Interrupt (MSI) support. Will send Intel-defined "End of Interrupt" broadcast message when initiated by the processor. ? System Management Interrupt (SMI), SCI, and SERR error indication ? Static lane numbering reversal support ? Supports DMI2 virtual channels VC0, VC1, VCm, and VCp Figure 1-2. PCI Express* Lane Partitioning and Direct Media Interface Gen 2 (DMI2) Transaction Link Physical 0…3 X4 DMI Port 0 DMI / PCIe 4…7 X4 Port 1b Transaction Link Physical 0…3 X4 Port 1a Port 1 (IOU2) PCIe X8 Port 1a 8…11 Transaction Link Physical 0…3 Port 2 (IOU0) PCIe X4 Port 2b X4 Port 2a X8 Port 2a X4 Port 2d X4 Port 2c X8 Port 2c X16 Port 2a 12..15 4…7 8…11 Transaction Link Physical 0…3 Port 3 (IOU1) PCIe X4 Port 3b X4 Port 3a X8 Port 3a X4 Port 3d X4 Port 3c X8 Port 3c X16 Port 3a 12..15 4…7 Datasheet 13 Introduction 1.3.4 Platform Environment Control Interface (PECI) The PECI is a one-wire interface that provides a communication channel between a PECI client (the processor) and a PECI master (the PCH). Refer to the Processor Thermal Mechanical Specifications and Design Guide for additional details on PECI services available in the processor (Refer to the Related Documents section). ? Supports operation at up to 2 Mbps data transfers ? Link layer improvements to support additional services and higher efficiency over PECI 2.0 generation ? Services include processor thermal and estimated power information, control functions for power limiting, P-state and T-state control, and access for Machine Check Architecture registers and PCI configuration space (both within the processor package and downstream devices) ? Single domain (Domain 0) is supported 1.4 Power Management Support 1.4.1 Processor Package and Core States ? Advance Configuration and Power Interface (ACPI) C-states as implemented by the following processor C-states: — Package: PC0, PC1/PC1E, PC2, PC3, PC6 (Package C7 is not supported) — Core: CC0, CC1, CC1E, CC3, CC6, CC7 ? Enhanced Intel SpeedStep Technology 1.4.2 System States Support ? S0, S1, S3, S4, S5 1.4.3 Memory Controller ? Multiple CKE power-down modes ? Multiple self-refresh modes ? Memory thermal monitoring using MEM_HOT_C01_N and MEM_HOT_C23_N signals 1.4.4 PCI Express* ? L1 ASPM power management capability; L0s is not supported 1.5 Thermal Management Support ? Digital Thermal Sensor with multiple on-die temperature zones ? Adaptive Thermal Monitor ? THERMTRIP_N and PROCHOT_N signal support ? On-Demand mode clock modulation ? Fan speed control with DTS ? Two integrated SMBus masters for accessing thermal data from DIMMs ? New Memory Thermal Throttling features using MEM_HOT_C{01/23}_N signals Introduction 14 Datasheet 1.6 Package Summary The processor socket type is noted as LGA2011. The processor package is a 52.5 x 45 mm FC-LGA package (LGA2011). Refer to the Processor Thermal Mechanical Specification and Design Guide (see Related Documents section) for the package mechanical specifications. 1.7 Terminology Table 1-1. Terminology (Sheet 1 of 3) Term Description ACPI Advanced Configuration and Power Interface ASPM Active State Power Management CCM Continuous Conduction Mode DCM Discontinuous Conduction Mode DDR3 Third generation Double Data Rate SDRAM memory technology that is the successor to DDR2 SDRAM DMA Direct Memory Access DMI Direct Media Interface DMI2 Direct Media Interface Gen 2 DTS Digital Thermal Sensor Enhanced Intel SpeedStep? Technology (EIST) Allows the operating system to reduce power consumption when performance is not needed. EPT Extended Page Tables ESD Electro-Static Discharge Execute Disable Bit The Execute Disable bit allows memory to be marked as executable or non- executable when combined with a supporting operating system. If code attempts to run in non-executable memory, the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities and can thus help improve the overall security of the system. See the Intel? 64 and IA-32 Architectures Software Developer's Manuals for more detailed information. Functional Operation Refers to the normal operating conditions in which all processor specifications, including DC, AC, system bus, signal quality, mechanical, and thermal are satisfied. IHS Integrated Heat Spreader. A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface. IIO The Integrated I/O Controller. An I/O controller that is integrated in the processor die. IMC The Integrated Memory Controller. A Memory Controller that is integrated in the processor die. Intel? 64 Technology 64-bit memory extensions to the IA-32 architecture. Further details on Intel 64 architecture and programming model can be found at http://developer.intel.com/technology/intel64/. Intel? ME Intel? Management Engine (Intel? ME) Intel? Turbo Boost Technology Intel? Turbo Boost Technology is a way to automatically run the processor core faster than the marked frequency if the part is operating under power, temperature, and current specifications limits of the Thermal Design Power (TDP). This results in increased performance of both single and multi-threaded applications. Intel? Virtualization Technology (Intel? VT) Processor virtualization, which when used in conjunction with Virtual Machine Monitor software, enables multiple robust independent software environments inside a single platform. Datasheet 15 Introduction Intel? VT-d Intel? Virtualization Technology (Intel? VT) for Directed I/O. Intel VT-d is a hardware assist, under system software (Virtual Machine Manager or operating system) control, for enabling I/O device virtualization. Intel VT-d also brings robust security by providing protection from errant DMAs by using DMA remapping, a key feature of Intel VT-d. IOV I/O Virtualization Jitter Any timing variation of a transition edge or edges from the defined Unit Interval (UI). JTAG Joint Test Action Group LGA2011-0 Socket The LGA2011-0 land FCLGA package mates with the system board through this surface mount, LGA2011-0 contact socket. LLC Last Level Cache MCH Memory Controller Hub NCTF Non-Critical to Function: NCTF locations are typically redundant ground or non- critical reserved; thus, the loss of the solder joint continuity at end of life conditions will not affect the overall product functionality. NEBS Network Equipment Building System. NEBS is the most common set of environmental design guidelines applied to telecommunications equipment in the United States. PCH Platform Controller Hub. The next generation chipset with centralized platform capabilities including the main I/O interfaces along with display connectivity, audio features, power management, manageability, security, and storage features. PCI Express* PCI Express* Generation 2.0/3.0 PCI Express* 2 PCI Express* Generation 2.0 PCI Express* 3 PCI Express* Generation 3.0 PCU Power Control Unit PECI Platform Environment Control Interface PLE Pause Loop Exiting Processor The 64-bit, single-core or multi-core component (package) Processor Core The term "processor core" refers to silicon die itself that can contain multiple execution cores. Each execution core has an instruction cache, data cache, and 256-KB L2 cache. All execution cores share the L3 cache. All DC and AC timing and signal integrity specifications are measured at the processor die (pads), unless otherwise noted. QoS Quality of Service Rank A unit of DRAM corresponding four to eight devices in parallel. These devices are usually, but not always, mounted on a single side of a DDR3 DIMM. SCI System Control Interrupt. Used in Advanced Configuration and Power Interface (ACPI) protocol. SMBus System Management Bus. A two-wire interface through which simple system and power management related devices can communicate with the rest of the system. It is based on the principals of the operation of the I2C* two-wire serial bus from Philips* Semiconductor. SSE Intel? Streaming SIMD Extensions (Intel? SSE) STD Suspend-to-Disk STR Suspend-to-RAM SVID Serial Voltage Identification TAC Thermal Averaging Constant TAP Test Access Port TCC Thermal Control Circuit TDP Thermal Design Power TLP Transaction Layer Packet TSOD Thermal Sensor on DIMM UDIMM Unbuffered Dual In-line Module Table 1-1. Terminology (Sheet 2 of 3) Term Description Introduction 16 Datasheet 1.8 Related Documents Refer to the following documents for additional information. Uncore The portion of the processor comprising the shared cache, IMC, HA, PCU, and UBox. Unit Interval Signaling convention that is binary and unidirectional. In this binary signaling, one bit is sent for every edge of the forwarded clock, whether it be a rising edge or a falling edge. If a number of edges are collected at instances t1, t2, tn,...., tk then the UI at instance "n" is defined as: UI n = t n – t n – 1 VCC Processor core power supply VCCD_01, VCCD_23 Variable power supply for the processor system memory interface. VCCD is the generic term for VCCD_01, VCCD_23. VID Voltage Identification VM Virtual Machine VMM Virtual Machine Monitor VPID Virtual Processor ID VR Voltage Regulator VRD Voltage Regulator Down VRM Voltage Regulator Module VSS Processor ground x1 Refers to a Link or Port with one Physical Lane x16 Refers to a Link or Port with sixteen Physical Lanes x4 Refers to a Link or Port with four Physical Lanes x8 Refers to a Link or Port with eight Physical Lanes Table 1-1. Terminology (Sheet 3 of 3) Term Description Table 1-2. Processor Documents Document Document Number / Location Intel? Core? i7 Processor Family for LGA2011 Socket Datasheet – Volume 2 of 2 329367 Intel? Core? i7 Processor Families for the LGA2011-0 Socket Thermal Mechanical Specifications and Design Guide 329368 IIntel? Core? i7 Processor Family for LGA2011 Socket Specification Update 326199 Datasheet 17 Introduction § Table 1-3. Public Specifications Document Document Number / Location Advanced Configuration and Power Interface Specification 3.0 http://www.acpi.info PCI Local Bus Specification 3.0 http://www.pcisig.com/specifications PCI Express Base Specification - Revision 2.1 and 1.1 PCI Express Base Specification - Revision 3.0 http://www.pcisig.com System Management Bus (SMBus) Specification, Revision 2.0 http://smbus.org/ DDR3 SDRAM Specification http://www.jedec.org Low (JESD22-A119) and High (JESD-A103) Temperature Storage Life Specifications http://www.jedec.org Intel? 64 and IA-32 Architectures Software Developer's Manuals ? Volume 1: Basic Architecture ? Volume 2A: Instruction Set Reference, A-M ? Volume 2B: Instruction Set Reference, N-Z ? Volume 3A: System Programming Guide ? Volume 3B: System Programming Guide Intel? 64 and IA-32 Architectures Optimization Reference Manual http://www.intel.com/products/proce ssor/manuals/index.htm Intel? Virtualization Technology Specification for Directed I/O Architecture Specification http://download.intel.com/technolog y/computing/vptech/Intel(r)_VT_for_ Direct_IO.pdf National Institute of Standards and Technology NIST SP800-90 http://csrc.nist.gov/publications/Pubs SPs.html Interfaces 18 Datasheet 2 Interfaces This chapter describes the functional behaviors supported by the processor. Topics covered include: ? System Memory Interface ? PCI Express* Interface ? Direct Media Interface 2 (DMI2) / PCI Express* Interface ? Platform Environment Control Interface (PECI) 2.1 System Memory Interface 2.1.1 System Memory Technology Support The Integrated Memory Controller (IMC) supports DDR3 protocols with four independent 64-bit memory channels and supports 1 unbuffered DIMM per channel. 2.1.2 System Memory Timing Support The IMC supports the following DDR3 Speed Bin, CAS Write Latency (CWL), and command signal mode timings on the main memory interface: ? tCL = CAS Latency ? tRCD = Activate Command to READ or WRITE Command delay ? tRP = PRECHARGE Command Period ? CWL = CAS Write Latency ? Command Signal modes = 1n indicates a new command may be issued every clock and 2n indicates a new command may be issued every 2 clocks. Command launch mode programming depends on the transfer rate and memory configuration. Datasheet 19 Interfaces 2.2 PCI Express* Interface This section describes the PCI Express* 3.0 interface capabilities of the processor. See the PCI Express* Base Specification for details of PCI Express* 3.0. 2.2.1 PCI Express* Architecture Compatibility with the PCI addressing model is maintained to ensure that all existing applications and drivers operate unchanged. The PCI Express* configuration uses standard mechanisms as defined in the PCI Plug-and-Play specification. The PCI Express* architecture is specified in three layers – Transaction Layer, Data Link Layer, and Physical Layer. The partitioning in the component is not necessarily along these same boundaries. Refer to the following figure for the PCI Express* Layering Diagram. PCI Express* uses packets to communicate information between components. Packets are formed in the Transaction and Data Link Layers to carry the information from the transmitting component to the receiving component. As the transmitted packets flow through the other layers, the packets are extended with additional information necessary to handle packets at those layers. At the receiving side, the reverse process occurs and packets get transformed from their Physical Layer representation to the Data Link Layer representation and finally (for Transaction Layer Packets) to the form that can be processed by the Transaction Layer of the receiving device. Figure 2-1. PCI Express* Layering Diagram Transaction Data Link Physical Logical Sub-Block Electrical Sub-Block RX TX Transaction Data Link Physical Logical Sub-Block Electrical Sub-Block RX TX Transaction Data Link Physical Logical Sub-Block Electrical Sub-Block RX TX Transaction Data Link Physical Logical Sub-Block Electrical Sub-Block RX TX Interfaces 20 Datasheet 2.2.1.1 Transaction Layer The upper layer of the PCI Express* architecture is the Transaction Layer. The Transaction Layer's primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs). TLPs are used to communicate transactions, such as read and write, as well as certain types of events. The Transaction Layer also manages flow control of TLPs. 2.2.1.2 Data Link Layer The middle layer in the PCI Express* stack, the Data Link Layer, serves as an intermediate stage between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer include link management, error detection, and error correction. The transmission side of the Data Link Layer accepts TLPs assembled by the Transaction Layer, calculates and applies data protection code and TLP sequence number, and submits them to Physical Layer for transmission across the Link. The receiving Data Link Layer is responsible for checking the integrity of received TLPs and for submitting them to the Transaction Layer for further processing. On detection of TLP error(s), this layer is responsible for requesting retransmission of TLPs until information is correctly received, or the Link is determined to have failed. The Data Link Layer also generates and consumes packets that are used for Link management functions. 2.2.1.3 Physical Layer The Physical Layer includes all circuitry for interface operation, including driver and input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching circuitry. It also includes logical functions related to interface initialization and maintenance. The Physical Layer exchanges data with the Data Link Layer in an implementation-specific format, and is responsible for converting this to an appropriate serialized format and transmitting it across the PCI Express* Link at a frequency and width compatible with the remote device. 2.2.2 PCI Express* Configuration Mechanism The PCI Express* link is mapped through a PCI-to-PCI bridge structure. PCI Express* extends the configuration space to 4096 bytes per-device/function, as compared to 256 bytes allowed by the Conventional PCI Specification. PCI Express* configuration space is divided into a PCI-compatible region (which consists of the first 256 bytes of a logical device's configuration space) and an extended PCI Express* region (which consists of the remaining configuration space). The PCI-compatible Figure 2-2. Packet Flow through the Layers Framing Sequence Number Header Date LCRC ECRC Framing Data Link Layer Transaction Layer Physical Layer Framing Sequence Number Header Date LCRC ECRC Framing Data Link Layer Transaction Layer Physical Layer Datasheet 21 Interfaces region can be accessed using either the mechanisms defined in the PCI specification or using the enhanced PCI Express* configuration access mechanism described in the PCI Express* Enhanced Configuration Mechanism section. The PCI Express* Host Bridge is required to translate the memory-mapped PCI Express* configuration space accesses from the host processor to PCI Express* configuration cycles. To maintain compatibility with PCI configuration addressing mechanisms, it is recommended that system software access the enhanced configuration space using 32-bit operations (32-bit aligned) only. See the PCI Express* Base Specification for details of both the PCI-compatible and PCI Express* Enhanced configuration mechanisms and transaction rules. 2.3 Direct Media Interface 2 (DMI2) / PCI Express* Interface Direct Media Interface 2 (DMI2) connects the processor to the Platform Controller Hub (PCH). DMI2 is similar to a four-lane PCI Express* supporting a speed of 5 GT/s per lane. Refer to Section 6.3 for additional details. Note: Only DMI2 x4 configuration is supported. 2.3.1 DMI2 Error Flow DMI2 can only generate SERR in response to errors, never SCI, SMI, MSI, PCI INT, or GPE. Any DMI2 related SERR activity is associated with Device 0. 2.3.2 Processor / PCH Compatibility Assumptions The processor is compatible with the PCH and is not compatible with any previous Intel Memory Controller Hub (MCH) and Integrated Controller Hub (ICH) products. 2.3.3 DMI2 Link Down The DMI2 link going down is a fatal, unrecoverable error. If the DMI2 data link goes to data link down, after the link was up, then the DMI2 link hangs the system by not allowing the link to retrain to prevent data corruption. This is controlled by the PCH. Downstream transactions that had been successfully transmitted across the link prior to the link going down may be processed as normal. No completions from downstream, non-posted transactions are returned upstream over the DMI2 link after a link down event. 2.4 Platform Environment Control Interface (PECI) The Platform Environment Control Interface (PECI) uses a single wire for self-clocking and data transfer. The bus requires no additional control lines. The physical layer is a self-clocked one-wire bus that begins each bit with a driven, rising edge from an idle level near zero volts. The duration of the signal driven high depends on whether the bit value is a logic '0' or logic '1'. PECI also includes variable data transfer rate established with every message. In this way, it is highly flexible even though underlying logic is simple. Interfaces 22 Datasheet The interface design was optimized for interfacing to Intel processor and chipset components in both single processor and multiple processor environments. The single wire interface provides low board routing overhead for the multiple load connections in the congested routing area near the processor and chipset components. Bus speed, error checking, and low protocol overhead provides adequate link bandwidth and reliability to transfer critical device operating conditions and configuration information. § § Datasheet 23 Technologies 3 Technologies This chapter covers the following technologies: ? Intel? Virtualization Technology (Intel? VT) ? Security Technologies ? Intel? Hyper-Threading Technology (Intel? HT Technology) ? Intel? Turbo Boost Technology ? Enhanced Intel? SpeedStep? Technology ? Intel? Advanced Vector Extensions (Intel? AVX) 3.1 Intel? Virtualization Technology (Intel? VT) Intel? Virtualization Technology (Intel? VT) makes a single system appear as multiple independent systems to software. This allows multiple, independent operating systems to run simultaneously on a single system. Intel VT comprises technology components to support virtualization of platforms based on Intel architecture microprocessors and chipsets. ? Intel? Virtualization Technology (Intel? VT) for Intel? 64 and IA-32 Intel? Architecture (Intel? VT-x) adds hardware support in the processor to improve the virtualization performance and robustness. Intel VT-x specifications and functional descriptions are included in the Intel? 64 and IA-32 Architectures Software Developer's Manual, Volume 3B and is available at http://www.intel.com/products/processor/manuals/index.htm ? Intel? Virtualization Technology (Intel? VT) for Directed I/O (Intel? VT-d) adds processor and uncore implementations to support and improve I/O virtualization performance and robustness. The Intel VT-d specification and other Intel VT documents can be referenced at http://www.intel.com/technology/virtualization/index.htm 3.1.1 Intel? VT-x Objectives Intel VT-x provides hardware acceleration for virtualization of IA platforms. Virtual Machine Monitor (VMM) can use Intel VT-x features to provide improved reliable virtualized platforms. By using Intel VT-x, a VMM is: ? Robust: VMMs no longer need to use para-virtualization or binary translation. This means that off-the-shelf operating systems and applications can be run without any special steps. ? Enhanced: Intel VT enables VMMs to run 64-bit guest operating systems on IA x86 processors. ? More reliable: Due to the hardware support, VMMs can now be smaller, less complex, and more efficient. This improves reliability and availability and reduces the potential for software conflicts. ? More secure: The use of hardware transitions in the VMM strengthens the isolation of VMs and further prevents corruption of one VM from affecting others on the same system. Technologies 24 Datasheet 3.1.2 Intel? VT-x Features The processor core supports the following Intel VT-x features: ? Extended Page Tables (EPT) — hardware assisted page table virtualization. — eliminates VM exits from guest operating system to the VMM for shadow page- table maintenance. ? Virtual Processor IDs (VPID) — Ability to assign a VM ID to tag processor core hardware structures (such as, TLBs). — This avoids flushes on VM transitions to give a lower-cost VM transition time and an overall reduction in virtualization overhead. ? Guest Preemption Timer — Mechanism for a VMM to preempt the execution of a guest operating system after an amount of time specified by the VMM. The VMM sets a timer value before entering a guest. — The feature aids VMM developers in flexibility and Quality of Service (QoS) guarantees. ? Descriptor-Table Exiting — Descriptor-table exiting allows a VMM to protect a guest operating system from internal (malicious software based) attack by preventing relocation of key system data structures like IDT (interrupt descriptor table), GDT (global descriptor table), LDT (local descriptor table), and TSS (task segment selector). — A VMM using this feature can intercept (by a VM exit) attempts to relocate these data structures and prevent them from being tampered by malicious software. ? Pause Loop Exiting (PLE) — PLE aims to improve virtualization performance and enhance the scaling of virtual machines with multiple virtual processors — PLE attempts to detect lock-holder preemption in a VM and helps the VMM to make better scheduling decisions 3.1.3 Intel? VT-d Objectives The key Intel VT-d objectives are domain-based isolation and hardware-based virtualization. A domain can be abstractly defined as an isolated environment in a platform to which a subset of host physical memory is allocated. Virtualization allows for the creation of one or more partitions on a single system. This could be multiple partitions in the same operating system, or there can be multiple operating system instances running on the same system – offering benefits such as system consolidation, legacy migration, activity partitioning, or security. Datasheet 25 Technologies 3.1.3.1 Intel? VT-d Features Supported The processor supports the following Intel VT-d features: ? Root entry, context entry, and default context ? Support for 4-K page sizes only ? Support for register-based fault recording only (for single entry only) and support for MSI interrupts for faults — Support for fault collapsing based on Requester ID ? Support for both leaf and non-leaf caching ? Support for boot protection of default page table — Support for non-caching of invalid page table entries ? Support for hardware based flushing of translated but pending writes and pending reads upon IOTLB invalidation ? Support for page-selective IOTLB invalidation ? Support for ARI (Alternative Requester ID – a PCI SIG ECR for increasing the function number count in a PCIe* device) to support I/O Virtualization (IOV) devices ? Improved invalidation architecture ? End point caching support (ATS) ? Interrupt remapping 3.1.4 Intel? Virtualization Technology Processor Extensions The processor supports the following Intel VT processor extension features: ? Large Intel VT-d Pages — Adds 2MB and 1GB page sizes to Intel VT-d implementations — Matches current support for Extended Page Tables (EPT) — Ability to share processor EPT page-table (with super-pages) with Intel VT-d — Benefits: ? Less memory foot-print for I/O page-tables when using super-pages ? Potential for improved performance – due to shorter page-walks, allows hardware optimization for IOTLB ? Transition latency reductions expected to improve virtualization performance without the need for VMM enabling. This reduces the VMM overheads further and increase virtualization performance. Technologies 26 Datasheet 3.2 Security Technologies 3.2.1 Intel? Advanced Encryption Standard New Instructions (Intel? AES-NI) Instructions These instructions enable fast and secure data encryption and decryption, using the Advanced Encryption Standard (Intel AES-NI) which is defined by FIPS Publication number 197. Since Intel AES-NI is the dominant block cipher, and it is deployed in various protocols, the new instructions will be valuable for a wide range of applications. The architecture consists of six instructions that offer full hardware support for Intel AES-NI. Four instructions support the Intel AES-NI encryption and decryption, and the other two instructions support the Intel AES-NI key expansion. Together, they offer a significant increase in performance compared to pure software implementations. The Intel AES-NI instructions have the flexibility to support all three standard Intel AES-NI key lengths, all standard modes of operation, and even some nonstandard or future variants. Beyond improving performance, the Intel AES-NI instructions provide important security benefits. Since the instructions run in data-independent time and do not use lookup tables, the instructions help in eliminating the major timing and cache-based attacks that threaten table-based software implementations of Intel AES-NI. In addition, these instructions make AES simple to implement, with reduced code size. This helps reducing the risk of inadvertent introduction of security flaws, such as difficult-to-detect side channel leaks. 3.2.2 Execute Disable Bit The Intel Execute Disable Bit functionality can help prevent certain classes of malicious buffer overflow attacks when combined with a supporting operating system. ? Allows the processor to classify areas in memory by where application code can execute and where it cannot. ? When a malicious worm attempts to insert code in the buffer, the processor disables code execution, preventing damage and worm propagation. 3.3 Intel? Hyper-Threading Technology (Intel? HT Technology) The processor supports Intel? Hyper-Threading Technology (Intel? HT Technology) that allows an execution core to function as two logical processors. While some execution resources such as caches, execution units, and buses are shared, each logical processor has its own architectural state with its own set of general-purpose registers and control registers. This feature must be enabled using the BIOS and requires operating system support. For more information on Intel Hyper-Threading Technology, see http://www.intel.com/products/ht/hyperthreading_more.htm. Datasheet 27 Technologies 3.4 Intel? Turbo Boost Technology Intel Turbo Boost Technology is a feature that allows the processor to opportunistically and automatically run faster than its rated operating frequency if it is operating below power, temperature, and current limits. The result is increased performance in multi- threaded and single threaded workloads. It should be enabled in the BIOS for the processor to operate with maximum performance. 3.4.1 Intel? Turbo Boost Operating Frequency The processor's rated frequency assumes that all execution cores are running an application at the thermal design power (TDP). However, under typical operation, not all cores are active. Therefore, most applications are consuming less than the TDP at the rated frequency. To take advantage of the available TDP headroom, the active cores can increase their operating frequency. To determine the highest performance frequency amongst active cores, the processor takes the following into consideration: ? number of cores operating in the C0 state ? estimated current consumption ? estimated power consumption ? die temperature Any of these factors can affect the maximum frequency for a given workload. If the power, current, or thermal limit is reached, the processor will automatically reduce the frequency to stay with its TDP limit. Note: Intel Turbo Boost Technology is only active if the operating system is requesting the P0 state. For more information on P-states and C-states, refer to Chapter 4. 3.5 Enhanced Intel? SpeedStep? Technology The processor supports Enhanced Intel SpeedStep? Technology as an advanced means of enabling very high performance while also meeting the power-conservation needs of the platform. Enhanced Intel SpeedStep Technology builds upon that architecture using design strategies that include the following: ? Separation between Voltage and Frequency Changes. By stepping voltage up and down in small increments separately from frequency changes, the processor is able to reduce periods of system unavailability that occur during frequency change. Thus, the system is able to transition between voltage and frequency states more often, providing improved power/performance balance. ? Clock Partitioning and Recovery. The bus clock continues running during state transition, even when the core clock and Phase-Locked Loop are stopped, which allows logic to remain active. The core clock can also restart more quickly under Enhanced Intel SpeedStep Technology. For additional information on Enhanced Intel SpeedStep? Technology, refer to Section 4.2.1. Technologies 28 Datasheet 3.6 Intel? Advanced Vector Extensions (Intel? AVX) Intel Advanced Vector Extensions (Intel AVX) is a new 256-bit vector SIMD extension of Intel Architecture. The introduction of Intel AVX started with the 2nd Generation Intel? Core? processor family. Intel AVX accelerates the trend of parallel computation in general purpose applications like image, video and audio processing, engineering applications (such as 3D modeling and analysis), scientific simulation, and financial analysts. Intel AVX is a comprehensive ISA extension of the Intel 64 Architecture. The main elements of Intel AVX are: ? Support for wider vector data (up to 256-bit) for floating-point computation ? Efficient instruction encoding scheme that supports 3 operand syntax and headroom for future extensions ? Flexibility in programming environment, ranging from branch handling to relaxed memory alignment requirements ? New data manipulation and arithmetic compute primitives, including broadcast, permute, fused-multiply-add, and so on ? Floating point bit depth conversion (Float 16) ? A group of 4 instructions that accelerate data conversion between 16-bit floating point format to 32-bit and vice versa. ? This benefits image processing and graphical applications allowing compression of data so less memory and bandwidth is required. The key advantages of Intel AVX are: ? Performance – Intel AVX can accelerate application performance using data parallelism and scalable hardware infrastructure across existing and new application domains: — 256-bit vector data sets can be processed up to twice the throughput of 128-bit data sets — Application performance can scale up with the number of hardware threads and number of cores — Application domain can scale out with advanced platform interconnect fabrics ? Power Efficiency – Intel AVX is extremely power efficient. Incremental power is insignificant when the instructions are unused or scarcely used. Combined with the high performance that it can deliver, applications that lend themselves heavily to using Intel AVX can be much more energy efficient and realize a higher performance-per-watt. ? Extensibility – Intel AVX has built-in extensibility for the future vector extensions: — Operating System context management for vector-widths beyond 256 bits is streamlined — Efficient instruction encoding allows unlimited functional enhancements: ? Vector width support beyond 256 bits ? 256-bit Vector Integer processing ? Additional computational and/or data manipulation primitives Datasheet 29 Technologies ? Compatibility – Intel AVX is backward compatible with previous ISA extensions including Intel SSE4: — Existing Intel SSE applications/library can: ? Run unmodified and benefit from processor enhancements ? Recompile existing Intel? SSE intrinsic using compilers that generate Intel AVX code ? Inter-operate with library ported to Intel AVX — Applications compiled with Intel AVX can inter-operate with existing Intel SSE libraries. § § Power Management 30 Datasheet 4 Power Management This chapter provides information on the following power management topics: ? Advanced Configuration and Power Interface (ACPI) States Supported ? Processor Core / Package Power Management ? System Memory Power Management ? Direct Media Interface 2 (DMI2) / PCI Express* Power Management 4.1 Advanced Configuration and Power Interface (ACPI) States Supported The ACPI states supported by the processor are described in this section. 4.1.1 System States 4.1.2 Processor Package and Core States The following table lists the package C-state support as: 1) the shallowest core C-state that allows entry into the package C-state, 2) the additional factors that will restrict the state from going any deeper, and 3) the actions taken with respect to the Ring Vcc, PLL state, and LLC. Table 4-3 lists the processor core C-states support. Table 4-1. System States State Description G0/S0 Full On G1/S3-Cold Suspend-to-RAM (STR). Context saved to memory. G1/S4 Suspend-to-Disk (STD). All power lost (except wakeup on PCH). G2/S5 Soft off. All power lost (except wakeup on PCH). Total reboot. G3 Mechanical off. All power removed from system. Datasheet 31 Power Management Notes: 1. Package C7 is not supported. 2. All package states are defined to be "E" states – such that the states always exit back into the LFM point upon execution resume 3. The mapping of actions for PC3, and PC6 are suggestions – microcode will dynamically determine which actions should be taken based on the desired exit latency parameters. 4. CC3/CC6 will all use a voltage below the VccMin operational point. The exact voltage selected will be a function of the snoop and interrupt response time requirements made by the devices (PCIe* and DMI) and the operating system. Table 4-2. Package C-State Support Package C- State Core States Limiting Factors Retention and PLL-Off LLC Fully Flushed Notes1 PC0 – Active CC0 N/A No No 2 PC2 – Snoopable Idle CC3–CC7 ? PCIe/PCH and Remote Socket Snoops ? PCIe/PCH and Remote Socket Accesses ? Interrupt response time requirement ? DMI Sidebands ? Configuration Constraints VccMin Freq = MinFreq PLL = ON No 2 PC3 – Light Retention at least one Core in C3 ? Core C-State ? Snoop Response Time ? Interrupt Response Time ? Non Snoop Response Time Vcc = retention PLL = OFF No 2, 3, 4 PC6 - Deeper Retention CC6–CC7 ? LLC ways open ? Snoop Response Time ? Non Snoop Response Time ? Interrupt Response Time Vcc = retention PLL = OFF No 2, 3, 4 Table 4-3. Core C-State Support Core C-State Global Clock PLL L1/L2 Cache Core VCC Context CC0 Running On Coherent Active Maintained CC1 Stopped On Coherent Active Maintained CC1E Stopped On Coherent Request LFM Maintained CC3 Stopped On Flushed to LLC Request Retention Maintained CC6 Stopped Off Flushed to LLC Power Gate Flushed to LLC CC7 Stopped Off Flushed to LLC Power Gate Flushed to LLC Power Management 32 Datasheet 4.1.3 Integrated Memory Controller (IMC) States 4.1.4 Direct Media Interface Gen 2 (DMI2) / PCI Express* Link States Note: L1 is only supported when the DMI2/PCI Express* port is operating as a PCI Express* port. Table 4-4. System Memory Power States State Description Power Up/Normal Operation CKE asserted. Active Mode, highest power consumption. CKE Power Down Opportunistic, per rank control after idle time: ? Active Power Down (APD) (default mode) — CKE de-asserted. Power savings in this mode, relative to active idle state is about 55% of the memory power. Exiting this mode takes 3 – 5 DCLK cycles. ? Pre-charge Power Down Fast Exit (PPDF) — CKE de-asserted. DLL-On. Also known as Fast CKE. Power savings in this mode, relative to active idle state is about 60% of the memory power. Exiting this mode takes 3 – 5 DCLK cycles. ? Pre-charge Power Down Slow Exit (PPDS) — CKE de-asserted. DLL-Off. Also known as Slow CKE. Power savings in this mode, relative to active idle state is about 87% of the memory power. Exiting this mode takes 3 – 5 DCLK cycles until the first command is allowed and 16 cycles until first data is allowed. ? Register CKE Power Down: — IBT-ON mode: Both CKEs are de-asserted, the Input Buffer Terminators (IBTs) are left "on". — IBT-OFF mode: Both CKEs are de-asserted, the Input Buffer Terminators (IBTs) are turned "off". Self-Refresh CKE de-asserted. In this mode, no transactions are executed and the system memory consumes the minimum possible power. Self-refresh modes apply to all memory channels for the processor. ? IO-MDLL Off: Option that sets the IO master DLL off when self-refresh occurs. ? PLL Off: Option that sets the PLL off when self-refresh occurs. Table 4-5. DMI2 / PCI Express* Link States State Description L0 Full on – Active transfer state. L1 Lowest Active State Power Management (ASPM) – Longer exit latency. Datasheet 33 Power Management 4.1.5 G, S, and C State Combinations 4.2 Processor Core / Package Power Management While executing code, Enhanced Intel SpeedStep? Technology optimizes the processor frequency and core voltage based on workload. Each frequency and voltage operating point is defined by ACPI as a P-State. When the processor is not executing code, it is idle. A low-power idle state is defined by ACPI as a C-state. In general, lower power C- States have longer entry and exit latencies. 4.2.1 Enhanced Intel? SpeedStep? Technology The following are the key features of Enhanced Intel SpeedStep? Technology: ? Multiple frequency and voltage points for optimal performance and power efficiency. These operating points are known as P-States. ? Frequency selection is software controlled by writing to processor MSRs. The voltage is optimized based on temperature, leakage, power delivery loadline, and dynamic capacitance. — If the target frequency is higher than the current frequency, VCC is ramped up to an optimized voltage. This voltage is signaled by the SVID Bus to the voltage regulator. Once the voltage is established, the PLL locks on to the target frequency. — If the target frequency is lower than the current frequency, the PLL locks to the target frequency, then transitions to a lower voltage by signaling the target voltage on the SVID Bus. — All active processor cores share the same frequency and voltage. In a multi- core processor, the highest frequency P-state requested amongst all active cores is selected. — Software-requested transitions are accepted at any time. The processor has a new capability from the previous processor generation; it can preempt the previous transition and complete the new request without waiting for this request to complete. ? The processor controls voltage ramp rates internally to ensure glitch-free transitions. ? Because there is low transition latency between P-states, a significant number of transitions per second are possible. Table 4-6. G, S and C State Combinations Global (G) State Sleep (S) State Processor Core (C) State Processor State System Clocks Description G0 S0 C0 Full On On Full On G0 S0 C1/C1E Auto-Halt On Auto-Halt G0 S0 C3 Deep Sleep On Deep Sleep G0 S0 C6/C7 Deep Power Down On Deep Power Down G1 S3 Power off — Off, except RTC Suspend to RAM G1 S4 Power off — Off, except RTC Suspend to Disk G2 S5 Power off — Off, except RTC Soft Off G3 N/A Power off — Power off Hard off Power Management 34 Datasheet 4.2.2 Low-Power Idle States When the processor is idle, low-power idle states (C-states) are used to save power. More power savings actions are taken for numerically higher C-States. However, higher C-states have longer exit and entry latencies. Resolution of C-states occurs at the thread, processor core, and processor package level. Thread level C-states are available if Intel Hyper-Threading Technology is enabled. Entry and exit of the C-states at the thread and core level are shown in Figure 4-2. While individual threads can request low-power C-states, power saving actions only take place once the core C-state is resolved. Core C-states are automatically resolved by the processor. For thread and core C-states, a transition to and from C0 is required before entering any other C-state. Figure 4-1. Idle Power Management Breakdown of the Processor Cores Figure 4-2. Thread and Core C-State Entry and Exit P ro c e s s o r P a c k a g e S ta te C o re N S ta te T h re a d 1 T h re a d 0 C o re 0 S ta te T h re a d 1 T h re a d 0 C1 C1E C7 C6 C3 C0 MWAIT(C1), HLT C0 MWAIT(C7), P_LVL4 I/O Read MWAIT(C6), P_LVL3 I/O Read MWAIT(C3), P_LVL2 I/O Read MWAIT(C1), HLT (C1E Enabled) Datasheet 35 Power Management Note: 1. If enabled, the core C-state will be C1E if all actives cores have also resolved a core C1 state or higher. 4.2.3 Requesting Low-Power Idle States The core C-state will be C1E if all actives cores have also resolved a core C1 state or higher. The primary software interfaces for requesting low-power idle states are through the MWAIT instruction with sub-state hints and the HLT instruction (for C1 and C1E). However, software may make C-state requests using the legacy method of I/O reads from the ACPI-defined processor clock control registers, referred to as P_LVLx. This method of requesting C-states provides legacy support for operating systems that initiate C-state transitions using I/O reads. For legacy operating systems, P_LVLx I/O reads are converted within the processor to the equivalent MWAIT C-state request. Therefore, P_LVLx reads do not directly result in I/O reads to the system. The feature, known as I/O MWAIT redirection, must be enabled in the BIOS. Note: The P_LVLx I/O Monitor address needs to be set up before using the P_LVLx I/O read interface. Each P-LVLx is mapped to the supported MWAIT(Cx) instruction as shown in the following table. The BIOS can write to the C-state range field of the PMG_IO_CAPTURE Model Specific Register (MSR) to restrict the range of I/O addresses that are trapped and emulate MWAIT like functionality. Any P_LVLx reads outside of this range do not cause an I/O redirection to MWAIT(Cx) like request. The reads fall through like a normal I/O instruction. Note: When P_LVLx I/O instructions are used, MWAIT substates cannot be defined. The MWAIT substate is always zero if I/O MWAIT redirection is used. By default, P_LVLx I/O redirections enable the MWAIT 'break on EFLAGS.IF' feature which triggers a wakeup on an interrupt even if interrupts are masked by EFLAGS.IF. Table 4-7. Coordination of Thread Power States at the Core Level Processor Core C-State Thread 1 C0 C1 C3 C6 C7 Thread 0 C0 C0 C0 C0 C0 C0 C1 C0 C11 C11 C11 C11 C3 C0 C11 C3 C3 C3 C6 C0 C11 C3 C6 C6 C7 C0 C11 C3 C6 C7 Table 4-8. P_LVLx to MWAIT Conversion P_LVLx MWAIT(Cx) Notes P_LVL2 MWAIT(C3) P_LVL3 MWAIT(C6) C6. No sub-states allowed. P_LVL4 MWAIT(C7) C7. No sub-states allowed. Power Management 36 Datasheet 4.2.4 Core C-states The following are general rules for all core C-states, unless specified otherwise: ? A core C-state is determined by the lowest numerical thread state (such as, Thread 0 requests C1E while Thread 1 requests C3, resulting in a core C1E state). See Table 4-6. ? A core transitions to C0 state when: — an interrupt occurs. — there is an access to the monitored address if the state was entered using an MWAIT instruction. ? For core C1/C1E, and core C3, an interrupt directed toward a single thread wakes only that thread. However, since both threads are no longer at the same core C-state, the core resolves to C0. ? An interrupt only wakes the target thread for both C3 and C6 states. Any interrupt coming into the processor package may wake any core. 4.2.4.1 Core C0 State The normal operating state of a core where code is being executed. 4.2.4.2 Core C1/C1E State C1/C1E is a low-power state entered when all threads within a core execute a HLT or MWAIT(C1/C1E) instruction. A System Management Interrupt (SMI) handler returns execution to either Normal state or the C1/C1E state. See the Intel? 64 and IA-32 Architecture Software Developer's Manual, Volume 3A/3B: System Programmer's Guide for more information. While a core is in C1/C1E state, it processes bus snoops and snoops from other threads. For more information on C1E, see Section 4.2.5.2. 4.2.4.3 Core C3 State Individual threads of a core can enter the C3 state by initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C3) instruction. A core in C3 state flushes the contents of its L1 instruction cache, L1 data cache, and L2 cache to the shared L3 cache, while maintaining its architectural state. All core clocks are stopped at this point. Because the core caches are flushed, the processor does not wake any core that is in the C3 state when either a snoop is detected or when another core accesses cacheable memory. 4.2.4.4 Core C6 State Individual threads of a core can enter the C6 state by initiating a P_LVL3 I/O read or an MWAIT(C6) instruction. Before entering core C6, the core saves its architectural state to a dedicated SRAM. Once complete, a core will have its voltage reduced to zero volts. In addition to flushing core caches, the core architecture state is saved to the uncore. Once the core state save is completed, core voltage is reduced to zero. During exit, the core is powered on and its architectural state is restored. 4.2.4.5 Core C7 State Individual threads of a core can enter the C7 state by initiating a P_LVL4 I/O read to the P_BLK or by an MWAIT(C7) instruction. Core C7 and core C7 substate are the same as Core C6. The processor does not support LLC flush under any condition. Datasheet 37 Power Management 4.2.4.6 Delayed Deep C-States The Delayed Deep C-states (DDCst) feature on this processor replaces the "C-state auto-demotion" scheme used in the previous processor generation. Deep C-states are defined as CC3 through CC7 (refer to Table 4-3 for supported deep C-states). The Delayed Deep C-states are intended to allow a staged entry into deeper C-states whereby the processor enters a lighter, short exit-latency C-state (core C1) for a period of time before committing to a long exit-latency deep C-state (core C3 and core C6). This is intended to allow the processor to get past the cluster of short-duration idles, providing each of those with a very fast wake-up time, but to still get the power benefit of the deep C-states on the longer idles. 4.2.5 Package C-States The processor supports C0, C1/C1E, C2, C3, and C6 power states. The following is a summary of the general rules for package C-state entry. These apply to all package C-states unless specified otherwise: ? A package C-state request is determined by the lowest numerical core C-state amongst all cores. ? A package C-state is automatically resolved by the processor depending on the core idle power states and the status of the platform components. — Each core can be at a lower idle power state than the package if the platform does not grant the processor permission to enter a requested package C-state. — The platform may allow additional power savings to be realized in the processor. ? For package C-states, the processor is not required to enter C0 before entering any other C-state. The processor exits a package C-state when a break event is detected. Depending on the type of break event, the processor does the following: ? If a core break event is received, the target core is activated and the break event message is forwarded to the target core. — If the break event is not masked, the target core enters the core C0 state and the processor enters package C0. — If the break event is masked, the processor attempts to re-enter its previous package state. ? If the break event was due to a memory access or snoop request. — But the platform did not request to keep the processor in a higher package C-state, the package returns to its previous C-state. — And the platform requests a higher power C-state, the memory access or snoop request is serviced and the package remains in the higher power C-state. The package C-states fall into two categories: independent and coordinated. C0/C1/C1E are independent, while C2/C3/C6 are coordinated. Starting with the 2nd Generation Intel? Core? processor family, package C-states are based on exit latency requirements that are accumulated from the PCIe* devices, PCH, and software sources. The level of power savings that can be achieved is a function of the exit latency requirement from the platform. As a result, there is no fixed relationship between the coordinated C-state of a package, and the power savings that will be obtained from the state. Coordinated package C-states offer a range of power savings that is a function of the guaranteed exit latency requirement from the platform. Power Management 38 Datasheet There is also a concept of Execution Allowed (EA). When EA status is 0, the cores in a socket are in C3 or a deeper state; a socket initiates a request to enter a coordinated package C-state. The coordination is across all sockets and the PCH. Table 4-9 shows an example of a dual-core processor package C-state resolution. Figure 4-3 summarizes package C-state transitions with package C2 as the interim between PC0 and PC1 prior to PC3 and PC6. Note: 1. The package C-state will be C1E if all actives cores have resolved a core C1 state or higher. 4.2.5.1 Package C0 State The normal operating state for the processor. The processor remains in the normal state when at least one of its cores is in the C0 or C1 state or when the platform has not granted permission to the processor to go into a low-power state. Individual cores may be in lower power idle states while the package is in C0 state. Table 4-9. Coordination of Core Power States at the Package Level Package C-State Core 1 C0 C1 C3 C6 Core 0 C0 C0 C0 C0 C0 C1 C0 C11 C11 C11 C3 C0 C11 C3 C3 C6 C0 C11 C3 C6 Figure 4-3. Package C-State Entry and Exit C2 C0 C1 C6 C3 Datasheet 39 Power Management 4.2.5.2 Package C1/C1E State No additional power reduction actions are taken in the package C1 state. However, if the C1E substate is enabled, the processor automatically transitions to the lowest supported core clock frequency, followed by a reduction in voltage. Autonomous power reduction actions that are based on idle timers, can trigger depending on the activity in the system. The package enters the C1 low-power state when: ? At least one core is in the C1 state. ? The other cores are in a C1 or lower power state. The package enters the C1E state when: ? All cores have directly requested C1E using MWAIT(C1) with a C1E sub-state hint. ? All cores are in a power state lower that C1/C1E but the package low-power state is limited to C1/C1E using the PMG_CST_CONFIG_CONTROL MSR. ? All cores have requested C1 using HLT or MWAIT(C1) and C1E auto-promotion is enabled in POWER_CTL. No notification to the system occurs upon entry to C1/C1E. 4.2.5.3 Package C2 State Package C2 state is an intermediate state which represents the point at which the system level coordination is in progress. The package cannot reach this state unless all cores are in at least C3. The package will remain in C2 when: ? it is awaiting for a coordinated response ? the coordinated exit latency requirements are too stringent for the package to take any power saving actions If the exit latency requirements are high enough the package will transition to C3 or C6 state depending on the state of the cores. 4.2.5.4 Package C3 State A processor enters the package C3 low-power state when: ? At least one core is in the C3 state. ? The other cores are in a C3 or lower power state, and the processor has been granted permission by the platform. ? L3 shared cache retains context and becomes inaccessible in this state. ? Additional power savings actions, as allowed by the exit latency requirements, include putting PCIe* links in L1, the uncore is not available, further voltage reduction can be taken. In package C3 state, the ring will be off and as a result no accesses to the LLC are possible. The content of the LLC is preserved. Power Management 40 Datasheet 4.2.5.5 Package C6 State A processor enters the package C6 low-power state when: ? At least one core is in the C6 state. ? The other cores are in a C6 or lower power state, and the processor has been granted permission by the platform. ? L3 shared cache retains context and becomes inaccessible in this state. ? Additional power savings actions, as allowed by the exit latency requirements, include putting PCIe* links in L1, the uncore is not available, further voltage reduction can be taken. In package C6 state, all cores have saved their architectural state and have had their core voltages reduced to zero volts. The LLC retains context, but no accesses can be made to the LLC in this state; the cores must break out to the internal state package C2 for snoops to occur. 4.2.6 Package C-State Power Specifications The following table lists the processor package C-state power specifications for various processor SKUs. The C-state power specification is based on post-silicon validation results. The processor case temperature is assumed at 50 °C for all C-states. Most of the idle power is attributed to the significant increase in higher speed I/O interfaces for the processor (PCIe*, DDR3). Notes: 1. SKUs are subject to change. Contact your Intel Field Representative to obtain the latest SKU information. 2. Package C1E power specified at TCASE = 60 o C 3. Package C3/C6 power specified at TCASE = 50 oC 4.3 System Memory Power Management The DDR3 power states can be summarized as the following: ? Normal operation (highest power consumption). ? CKE Power-Down: Opportunistic, per rank control after idle time. There may be different levels. — Active Power-Down. — Pre-charge Power-Down with Fast Exit. — Pre-charge power Down with Slow Exit. ? Self-Refresh: In this mode no transaction is executed. The DDR consumes the minimum possible power. Table 4-10. Package C-State Power Specifications TDP SKUs1 C1E (W)2 C3 (W)3 C6 (W)3 6-Core 130W (6-core) 53 28 13 4-Core 130W (4-core) 53 28 13 Datasheet 41 Power Management 4.3.1 CKE Power-Down The CKE input land is used to enter and exit different power-down modes. The memory controller has a configurable activity timeout for each rank. When no reads are present to a given rank for the configured interval, the memory controller will transition the rank to power-down mode. The memory controller transitions the DRAM to power-down by de-asserting CKE and driving a NOP command. The memory controller will tri-state all DDR interface lands except CKE (de-asserted) and ODT while in power-down. The memory controller will transition the DRAM out of power-down state by synchronously asserting CKE and driving a NOP command. When CKE is off, the internal DDR clock is disabled and the DDR power is significantly reduced. The DDR defines three levels of power-down: ? Active power-down: This mode is entered if there are open pages when CKE is de- asserted. In this mode the open pages are retained. Existing this mode is 3 – 5 DCLK cycles. ? Pre-charge power-down fast exit: This mode is entered if all banks in DDR are pre- charged when de-asserting CKE. Existing this mode is 3 – 5 DCLK cycles. Difference from the active power-down mode is that when waking up all page-buffers are empty. ? Pre-charge power-down slow exit: In this mode the data-in DLLs on DDR are off. Existing this mode is 3 – 5 DCLK cycles until the first command is allowed, but about 16 cycles until first data is allowed. 4.3.2 Self-Refresh The Power Control Unit (PCU) may request the memory controller to place the DRAMs in self-refresh state. Self-refresh per channel is supported. The BIOS can put the channel in self-refresh if software remaps memory to use a subset of all channels. Also, processor channels can enter self-refresh autonomously without a PCU instruction when the package is in a package C0 state. 4.3.2.1 Self-Refresh Entry Self-refresh entrance can be either disabled or triggered by an idle counter. Idle counter always clears with any access to the memory controller and remains clear as long as the memory controller is not drained. As soon as the memory controller is drained, the counter starts counting. When it reaches the idle-count, the memory controller will place the DRAMs in self-refresh state. Power may be removed from the memory controller core at this point. But VCCD supply (1.5V or 1.35V) to the DDR I/O must be maintained. Power Management 42 Datasheet 4.3.2.2 Self-Refresh Exit Self-refresh exit can be either a message from an external unit (PCU in most cases, but also possibly from any message-channel master) or as reaction for an incoming transaction. Here are the proper actions on self-refresh exit: ? CK is enabled, and four CK cycles driven. ? When proper skew between Address/Command and CK are established, assert CKE. ? Issue NOPs for tXSRD cycles. ? Issue ZQCL to each rank. ? The global scheduler will be enabled to issue commands. 4.3.2.3 DLL and PLL Shutdown Self-refresh, according to configuration, may be a trigger for master DLL shut-down and PLL shut-down. The master DLL shut-down is issued by the memory controller after the DRAMs have entered self-refresh. The PLL shut-down and wake-up is issued by the PCU. The memory controller gets a signal from the PLL indicating that the memory controller can start working again. 4.3.3 DRAM I/O Power Management Unused signals are tri-stated to save power. This includes all signals associated with an unused memory channel. The I/O buffer for an unused signal should be tri-stated (output driver disabled); the input receiver (differential sense-amp) should be disabled. The input path must be gated to prevent spurious results due to noise on the unused signals (typically handled automatically when input receiver is disabled). 4.4 Direct Media Interface 2 (DMI2) / PCI Express* Power Management Active State Power Management (ASPM) support using L1 state; L0s is not supported. § § Datasheet 43 Thermal Management Specifications 5 Thermal Management Specifications The processor requires a thermal solution to maintain temperatures within operating limits. Any attempt to operate the processor outside these limits may result in permanent damage to the processor and potentially other components within the system. Maintaining the proper thermal environment is key to reliable, long-term system operation. A complete solution includes both component and system-level thermal management features. Component-level thermal solutions can include active or passive heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system-level thermal solutions may consist of system fans combined with ducting and venting. This section provides data necessary for developing a complete thermal solution. For more information on designing a component-level thermal solution, refer to the Processor Thermal Mechanical Specifications and Design Guidelines (see Related Documents section). § § Signal Descriptions 44 Datasheet 6 Signal Descriptions This chapter describes the processor signals. The signals are arranged in functional groups according to their associated interface or category. 6.1 System Memory Interface Signals Table 6-1. Memory Channel DDR0, DDR1, DDR2, DDR3 Signal Name Description DDR{0/1/2/3}_BA[2:0] Bank Address: These signals define the bank which is the destination for the current Activate, Read, Write, or PRECHARGE command. DDR{0/1/2/3}_CAS_N Column Address Strobe DDR{0/1/2/3}_CKE[5:0] Clock Enable DDR{0/1/2/3}_CLK_DN[3:0] DDR{0/1/2/3}_CLK_DP[3:0] Differential Clocks to the DIMM: All command and control signals are valid on the rising edge of clock. DDR{0/1/2/3}_CS_N[9:0] Chip Select: Each signal selects one rank as the target of the command and address. DDR{0/1/2/3}_DQ[63:00] Data Bus: DDR3 Data bits. DDR{0/1/2/3}_DQS_DP[17:00] DDR{0/1/2/3}_DQS_DN[17:00] Data strobe: This is a differential pair Data Strobe. Differential strobes latch data for each DRAM. Different numbers of strobes are used depending on whether the connected DRAMs are x4,x8. Driven with edges in center of data, receive edges are aligned with data edges. DDR{0/1/2/3}_MA[15:00] Memory Address: Selects the Row address for Reads and writes, and the column address for activates. Also used to set values for DRAM configuration registers. DDR{0/1/2/3}_ODT[5:0] On-Die Termination: Enables DRAM on die termination during Data Write or Data Read transactions. DDR{0/1/2/3}_RAS_N Row Address Strobe DDR{0/1/2/3}_WE_N Write Enable Datasheet 45 Signal Descriptions 6.2 PCI Express* Based Interface Signals Note: PCI Express* Ports 1, 2, and 3 signals are receive and transmit differential pairs. Table 6-2. Memory Channel Miscellaneous Signal Name Description DDR_RESET_C01_N DDR_RESET_C23_N System Memory Reset: Reset signal from processor to DRAM devices on the DIMMs. DDR_RESET_C01_N is used for memory channels 0 and 1 while DDR_RESET_C23_N is used for memory channels 2 and 3. DDR_SCL_C01 DDR_SCL_C23 SMBus clock for the dedicated interface to the serial presence detect (SPD) and thermal sensors (TSoD) on the DIMMs. DDR_SCL_C01 is used for memory channels 0 and 1 while DDR_SCL_C23 is used for memory channels 2 and 3. DDR_SDA_C01 DDR_SDA_C23 SMBus data for the dedicated interface to the serial presence detect (SPD) and thermal sensors (TSoD) on the DIMMs. DDR_SDA_C1 is used for memory channels 0 and 1 while DDR_SDA_C23 is used for memory channels 2 and 3. DDR_VREFDQRX_C01 DDR_VREFDQRX_C23 Voltage reference for system memory reads: DDR_VREFDQRX_C01 is used for memory channels 0 and 1 while DDR_VREFDQRX_C23 is used for memory channels 2 and 3. DDR_VREFDQTX_C01 DDR_VREFDQTX_C23 Voltage reference for system memory writes: DDR_VREFDQTX_C01 is used for memory channels 0 and 1 while DDR_VREFDQTX_C23 is used for memory channels 2 and 3. These signals are not connected and there is no functionality provided on these two signals. The signals are unused by the processor. DDR{01/23}_RCOMP[2:0] System memory impedance compensation: Impedance compensation must be terminated on the system board using a precision resistor. DRAM_PWR_OK_C01 DRAM_PWR_OK_C23 Power good input signal used to indicate that the VCCD power supply is stable for memory channels 0 and 1, and channels 2 and 3. Table 6-3. PCI Express* Port 1 Signals Signal Name Description PE1A_RX_DN[3:0] PE1A_RX_DP[3:0] PCIe* Receive Data Input PE1B_RX_DN[7:4] PE1B_RX_DP[7:4] PCIe Receive Data Input PE1A_TX_DN[3:0] PE1A_TX_DP[3:0] PCIe Transmit Data Output PE1B_TX_DN[7:4] PE1B_TX_DP[7:4] PCIe Transmit Data Output Table 6-4. PCI Express* Port 2 Signals (Sheet 1 of 2) Signal Name Description PE2A_RX_DN[3:0] PE2A_RX_DP[3:0] PCIe Receive Data Input PE2B_RX_DN[7:4] PE2B_RX_DP[7:4] PCIe Receive Data Input PE2C_RX_DN[11:8] PE2C_RX_DP[11:8] PCIe Receive Data Input PE2D_RX_DN[15:12] PE2D_RX_DP[15:12] PCIe* Receive Data Input PE2A_TX_DN[3:0] PE2A_TX_DP[3:0] PCIe Transmit Data Output PE2B_TX_DN[7:4] PE2B_TX_DP[7:4] PCIe Transmit Data Output Signal Descriptions 46 Datasheet PE2C_TX_DN[11:8] PE2C_TX_DP[11:8] PCIe Transmit Data Output PE2D_TX_DN[15:12] PE2D_TX_DP[15:12] PCIe Transmit Data Output Table 6-5. PCI Express* Port 3 Signals Signal Name Description PE3A_RX_DN[3:0] PE3A_RX_DP[3:0] PCIe Receive Data Input PE3B_RX_DN[7:4] PE3B_RX_DP[7:4] PCIe Receive Data Input PE3C_RX_DN[11:8] PE3C_RX_DP[11:8] PCIe Receive Data Input PE3D_RX_DN[15:12] PE3D_RX_DP[15:12] PCIe Receive Data Input PE3A_TX_DN[3:0] PE3A_TX_DP[3:0] PCIe Transmit Data Output PE3B_TX_DN[7:4] PE3B_TX_DP[7:4] PCIe Transmit Data Output PE3C_TX_DN[11:8] PE3C_TX_DP[11:8] PCIe Transmit Data Output PE3D_TX_DN[15:12] PE3D_TX_DP[15:12] PCIe Transmit Data Output Table 6-6. PCI Express* Miscellaneous Signals Signal Name Description PE_RBIAS PCI RBIAS: This input is used to control PCI Express* bias currents. A 50 ohm 1% tolerance resistor must be connected from this land to VSS by the platform. PE_RBIAS is required to be connected as if the link is being used even when PCIe* is not used. PE_RBIAS_SENSE PCI RBIAS Sense: This signal provides dedicated bias resistor sensing to minimize the voltage drop caused by packaging and platform effects. PE_RBIAS_SENSE is required to be connected as if the link is being used even when PCIe* is not used. PE_VREF_CAP PCI Express* Voltage Reference: PE_VREF_CAP is used to measure the actual output voltage and comparing it to the assumed voltage. A 0.01 uF capacitor must be connected from this land to VSS. Table 6-4. PCI Express* Port 2 Signals (Sheet 2 of 2) Signal Name Description Datasheet 47 Signal Descriptions 6.3 Direct Media Interface Gen 2 (DMI2) / PCI Express* Port 0 Signals 6.4 Platform Environment Control Interface (PECI) Signal 6.5 System Reference Clock Signals 6.6 Joint Test Action Group (JTAG) and Test Access Point (TAP) Signals Table 6-7. DMI2 and PCI Express Port 0 Signals Signal Name Description DMI_RX_DN[3:0] DMI_RX_DP[3:0] DMI2 Receive Data Input DMI_TX_DP[3:0] DMI_TX_DN[3:0] DMI2 Transmit Data Output Table 6-8. Platform Environment Control Interface (PECI) Signals Signal Name Description PECI Platform Environment Control Interface: This signal is the serial sideband interface to the processor and is used primarily for thermal, power and error management. Table 6-9. System Reference Clock (BCLK{0/1}) Signals Signal Name Description BCLK{0/1}_D[N/P] Reference Clock Differential input: These signals provide the PLL reference clock differential input into the processor. 100 MHz typical BCLK0 is the system clock and BCLK1 is the PCI Express* reference clock. Table 6-10. Joint Test Action Group (JTAG) and Test Access Port (TAP) Signals (Sheet 1 of 2) Signal Name Description BPM_N[7:0] Breakpoint and Performance Monitor Signals: I/O signals from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance. These are 100 MHz signals. EAR_N External Alignment of Reset: This signal is used to bring the processor up into a deterministic state. This signal is pulled up on the die; refer to Table 7-6 for details. PRDY_N Probe Mode Ready: This signal is a processor output used by debug tools to determine processor debug readiness. PREQ_N Probe Mode Request: This signal is used by debug tools to request debug operation of the processor. TCK Test Clock: This signal provides the clock input for the processor Test Bus (also known as the Test Access Port). TDI Test Data In: This signal transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support. TDO Test Data Out: This signal transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support. Signal Descriptions 48 Datasheet 6.7 Serial Voltage Identification (SVID) Signals 6.8 Processor Asynchronous Sideband and Miscellaneous Signals TMS Test Mode Select: This signal is a JTAG specification support signal used by debug tools. TRST_N Test Reset: This signal resets the Test Access Port (TAP) logic. TRST_N must be driven low during power on Reset. Table 6-11. Serial Voltage Identification (SVID) Signals Signal Name Description SVIDALERT_N Serial VID alert SVIDCLK Serial VID clock SVIDDATA Serial VID data out Table 6-12. Processor Asynchronous Sideband Signals (Sheet 1 of 3) Signal Name Description BIST_ENABLE BIST Enable Strap: This input allows the platform to enable or disable built-in self test (BIST) on the processor. This signal is pulled up on the die (refer to Table 7-6 for details). CAT_ERR_N Catastrophic Error: This signal indicates that the system has experienced a fatal or catastrophic error and cannot continue to operate. The processor will assert CAT_ERR_N for nonrecoverable machine check errors and other internal unrecoverable errors. It is expected that every processor in the system will wire- OR CAT_ERR_N for all processors. Since this is an I/O signal, external agents are allowed to assert this signal, which will cause the processor to take a machine check exception. This signal is sampled after PWRGOOD assertion. On the processor, CAT_ERR_N is used for signaling the following types of errors: ? Legacy MCERRs, CAT_ERR_N is asserted for 16 BCLKs. ? Legacy IERRs, CAT_ERR_N remains asserted until warm or cold reset. CPU_ONLY_RESET CPU Only Reset: Reserved, not used ERROR_N[2:0] Error: These are error status signals for integrated I/O (IIO) unit: ? Error_N0 – Hardware correctable error (no operating system or firmware action necessary) ? Error_N1 – Non-fatal error (operating system or firmware action required to contain and recover) ? Error_N2 – Fatal error (system reset likely required to recover) MEM_HOT_C01_N MEM_HOT_C23_N Memory Throttle Control: MEM_HOT_C01_N and MEM_HOT_C23_N signals have two modes of operation – input and output mode. Input mode is externally asserted and is used to detect external events (such as VR_HOT# from the memory voltage regulator) and causes the processor to throttle the appropriate memory channels. Output mode is asserted by the processor known as level mode. In level mode, the output indicates that a particular branch of memory subsystem is hot. MEM_HOT_C01_N is used for memory channels 0 and 1 while MEM_HOT_C23_N is used for memory channels 2 and 3. PMSYNC Power Management Sync: A sideband signal to communicate power management status from the Platform Controller Hub (PCH) to the processor. Table 6-10. Joint Test Action Group (JTAG) and Test Access Port (TAP) Signals (Sheet 2 of 2) Signal Name Description Datasheet 49 Signal Descriptions PROCHOT_N Processor Hot: PROCHOT_N will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit has been activated, if enabled. This signal can also be driven to the processor to activate the Thermal Control Circuit. This signal is sampled after PWRGOOD assertion. If PROCHOT_N is asserted at the de-assertion of RESET_N, the processor will tri- state its outputs. PWRGOOD Power Good: This is a processor input. The processor requires this signal to be a clean indication that BCLK, VTTA/VTTD, VSA, VCCPLL, and VCCD_01, and VCCD_23 supplies are stable and within their specifications. "Clean" implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until the supplies come within specification. The signal must then transition monotonically to a high state. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD. PWRGOOD transitions from inactive to active when all supplies except VCC are stable. VCC has a VBOOT of zero volts and is not included in PWRGOOD indication in this phase. However, for the active to inactive transition, if any processor power supply (VCC, VTTA/VTTD, VSA, VCCD, or VCCPLL) is about to fail or is out of regulation, the PWRGOOD is to be negated. The signal must be supplied to the processor. It is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation. Note: VCC has a VBOOT setting of 0.0V and is not included in the PWRGOOD indication and VSA has a Vboot setting of 0.9V. RESET_N Reset: Asserting the RESET_N signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. Some PLL and error states are not effected by reset and only PWRGOOD forces them to a known state. SAFE_MODE_BOOT Safe Mode Boot: Strap signal. SAFE_MODE_BOOT allows the processor to wake up safely by disabling all clock gating. This allows BIOS to load registers or patches if required. This signal is sampled after PWRGOOD assertion. The signal is pulled down on the die (refer to Table 7-6 for details). TEST[4:0] Test: Test[4:0] must be individually connected to an appropriate power source or ground through a resistor for proper processor operation. THERMTRIP_N Thermal Trip: Assertion of THERMTRIP_N indicates one of two possible critical over-temperature conditions: ? The processor junction temperature has reached a level beyond which permanent silicon damage may occur and ? The system memory interface has exceeded a critical temperature limit set by BIOS. Measurement of the processor junction temperature is accomplished through multiple internal thermal sensors that are monitored by the Digital Thermal Sensor (DTS). Simultaneously, the Power Control Unit (PCU) monitors external memory temperatures using the dedicated SMBus interface to the DIMMs. If any of the DIMMs exceed the BIOS defined limits, the PCU will signal THERMTRIP_N to prevent damage to the DIMMs. Once activated, the processor will stop all execution and shut down all PLLs. To further protect the processor, its core voltage (VCC), VTTA, VTTD, VSA, VCCPLL, VCCD supplies must be removed following the assertion of THERMTRIP_N. Once activated, THERMTRIP_N remains latched until RESET_N is asserted. While the assertion of the RESET_N signal may de-assert THERMTRIP_N, if the processor's junction temperature remains at or above the trip level, THERMTRIP_N will again be asserted after RESET_N is de-asserted. This signal can also be asserted if the system memory interface has exceeded a critical temperature limit set by BIOS. This signal is sampled after PWRGOOD assertion. Table 6-12. Processor Asynchronous Sideband Signals (Sheet 2 of 3) Signal Name Description Signal Descriptions 50 Datasheet TXT_AGENT Intel? Trusted Execution Technology (Intel? TXT) Agent: This is a strap signal: 0 = Default. The socket is not the Intel? TXT Agent. 1 = The socket is the Intel? TXT Agent. In non-Scalable dual-processor (DP) platforms, the legacy socket (identified by SOCKET_ID[1:0] = 00b) with Intel TXT Agent should always set the TXT_AGENT to 1b. On Scalable DP platforms the TXT AGENT is at the Node Controller. This signal is pulled down on the die (refer to Table 7-6 for details). TXT_PLTEN Intel? Trusted Execution Technology (Intel? TXT) Platform Enable: This is a strap signal: 0 = The platform is not Intel? TXT enabled. All sockets should be set to zero. Scalable DP (sDP) platforms should choose this setting if the Node Controller does not support Intel TXT. 1 = Default. The platform is Intel TXT enabled. All sockets should be set to one. In a non-Scalable DP platform this is the default. When this is set, Intel TXT functionality requires the user to explicitly enable Intel TXT using BIOS setup. This signal is pulled up on the die (refer to Table 7-6 for details). Table 6-13. Miscellaneous Signals Signal Name Description BCLK_SELECT[1:0] BCLK Select: These configuration straps are used to inform the processor that a non-standard value for BCLK will be applied at reset. A "11" encoding on these inputs informs the processor to run at DEFAULT BCLK = 100 MHz. These signals have internal pull-up to VTT. The encoding is as follows: BCLK_SELECT1 BCLK_SELECT0 BCLK Selected X X 100 MHz (default) 1 1 100 MHz 1 0 125 MHz 0 1 Reserved 0 0 Reserved CORE_VREF_CAP A capacitor must be connected from this land. CORE_RBIAS This input is used to control bias currents. CORE_RBIAS_SENSE This signal provides dedicated bias resistor sensing to minimize the voltage drop caused by packaging and platform effects. PROC_SEL_N Processor Selected: This output can be used by the platform to determine if the installed processor is an Intel? Core? i7 processor family for LGA2011 socket or a future processor. There is no connection to the processor silicon for this signal. This signal is also used by the VCCPLL and VTT rails to switch their output voltage to support future processors. RSVD RESERVED: All signals that are RSVD must be left unconnected on the board. Refer to Section 7.1.9 for details. SKTOCC_N Socket Occupied: SKTOCC_N is used to indicate that a processor is present. This is pulled to ground on the processor package; there is no connection to the processor silicon for this signal. TESTHI_BH48 TESTHI_BF48 TESTHI_AT50 Test High: TESTHI_XX signal must be pulled up on the board. Table 6-12. Processor Asynchronous Sideband Signals (Sheet 3 of 3) Signal Name Description Datasheet 51 Signal Descriptions 6.9 Processor Power and Ground Supplies § § § § Table 6-14. Power and Ground Signals Signal Name Description VCC Variable power supply for the processor cores, lowest level caches (LLC), ring interface, and home agent. It is provided by a VRM/EVRD 12.0 compliant regulator for each processor socket. The output voltage of this supply is selected by the processor, using the serial voltage ID (SVID) bus. Note: VCC has a Vboot setting of 0.0 V and is not included in the PWRGOOD indication. VCC_SENSE VSS_VCC_SENSE VCC_SENSE and VSS_VCC_SENSE provide an isolated, low impedance connection to the processor core power and ground. These signals must be connected to the voltage regulator feedback circuit that insures the output voltage (that is, processor voltage) remains within specification. VSA_SENSE VSS_VSA_SENSE VSA_SENSE and VSS_VSA_SENSE provide an isolated, low impedance connection to the processor system agent (VSA) power plane. These signals must be connected to the voltage regulator feedback circuit that insures the output voltage (that is, processor voltage) remains within specification. VTTD_SENSE VSS_VTTD_SENSE VTTD_SENSE and VSS_VTTD_SENSE provide an isolated, low impedance connection to the processor I/O power plane. These signals must be connected to the voltage regulator feedback circuit that insures the output voltage (that is, processor voltage) remains within specification. VCCD_01 and VCCD_23 Variable power supply for the processor system memory interface. These signals are provided by two VRM/EVRD 12.0 compliant regulators per processor socket. VCCD_01 and VCCD_23 are used for memory channels 0, 1, 2, and 3 respectively. The valid voltage of this supply (1.50V or 1.35V) is configured by BIOS after determining the operating voltages of the installed memory. VCCD_01 and VCCD_23 will also be referred to as VCCD. Note: The processor must be provided VCCD_01 and VCCD_23 for proper operation, even in configurations where no memory is populated. A VRM/EVRD 12.0 controller is recommended, but not required. VCCPLL Fixed power supply (1.7V) for the processor phased lock loop (PLL). VSA Variable power supply for the processor system agent units. These include logic (non-I/O) for the integrated I/O controller, the integrated memory controller (IMC), and the Power Control Unit (PCU). The output voltage of this supply is selected by the processor, using the serial voltage ID (SVID) bus. Note: VSA has a Vboot setting of 0.9V. VSS Processor ground node. VTTA VTTD Combined fixed analog and digital power supply for I/O sections of the processor, Direct Media Interface Gen 2 (DMI2) interface, and PCI Express* interface. These signals will also be referred to as VTT. Electrical Specifications 52 Datasheet 7 Electrical Specifications This chapter covers the following topics: ? Processor Signaling ? Signal Group Summary ? Power-On Configuration (POC) Options ? Absolute Maximum and Minimum Ratings ? DC Specifications 7.1 Processor Signaling The processor includes 2011 lands that use various signaling technologies. Signals are grouped by electrical characteristics and buffer type into various signal groups. These include DDR3 (Reference Clock, Command, Control, and Data), PCI Express*, DMI2, Platform Environmental Control Interface (PECI), System Reference Clock, SMBus, JTAG and Test Access Port (TAP), SVID Interface, Processor Asynchronous Sideband, Miscellaneous, and Power/Other signals. Refer to Table 7-5 for details. 7.1.1 System Memory Interface Signal Groups The system memory interface uses DDR3 technology that consists of numerous signal groups. These include Reference Clocks, Command Signals, Control Signals, and Data Signals. Each group consists of numerous signals that may use various signaling technologies. Refer to Table 7-5 for further details. Throughout this chapter the system memory interface may be referred to as DDR3. 7.1.2 PCI Express* Signals The PCI Express Signal Group consists of PCI Express* ports 1, 2, and 3, and PCI Express miscellaneous signals. Refer to Table 7-5 for further details. 7.1.3 Direct Media Interface Gen 2 (DMI2) / PCI Express* Signals The Direct Media Interface Gen 2 (DMI2) sends and receives packets and/or commands to the PCH. The DMI2 is an extension of the standard PCI Express Specification. The DMI2/PCI Express Signals consist of DMI2 receive and transmit input/output signals and a control signal to select DMI2 or PCIe* 2.0 operation for port 0. Refer to Table 7-5 for further details. Datasheet 53 Electrical Specifications 7.1.4 Platform Environmental Control Interface (PECI) PECI is an Intel proprietary interface that provides a communication channel between Intel processors and chipset components to external system management logic and thermal monitoring devices. The processor contains a Digital Thermal Sensor (DTS) that reports a relative die temperature as an offset from Thermal Control Circuit (TCC) activation temperature. Temperature sensors located throughout the die are implemented as analog-to-digital converters calibrated at the factory. PECI provides an interface for external devices to read processor temperature, perform processor manageability functions, and manage processor interface tuning and diagnostics. Refer to the Processor Thermal Mechanical Specifications and Design Guidelines (see Related Documents section) for processor specific implementation details for PECI. The PECI interface operates at a nominal voltage set by VTTD. The set of DC electrical specifications shown in Table 7-14 is used with devices normally operating from a VTTD interface supply. 7.1.4.1 Input Device Hysteresis The PECI client and host input buffers must use a Schmitt-triggered input design for improved noise immunity. Refer to Figure 7-1 and Table 7-14. 7.1.5 System Reference Clocks (BCLK{0/1}_DP, BCLK{0/1}_DN) The processor core, processor uncore, PCI Express* and DDR3 memory interface frequencies) are generated from BCLK{0/1}_DP and BCLK{0/1}_DN signals. The processor maximum core frequency and DDR memory frequency are set during manufacturing. It is possible to override the processor core frequency setting using software. This permits operation at lower core frequencies than the factory set maximum core frequency. The processor core frequency is configured during reset by using values stored within the device during manufacturing. The stored value sets the lowest core multiplier at which the particular processor can operate. If higher speeds are desired, the appropriate ratio can be configured using the IA32_PERF_CTL MSR (MSR 199h); Bits [15:0]. Figure 7-1. Input Device Hysteresis MinimumVP MaximumVP MinimumVN MaximumVN PECI HighRange PECI LowRange ValidInput Signal Range Minimum Hysteresis VTTD PECI Ground Electrical Specifications 54 Datasheet Clock multiplying within the processor is provided by the internal phase locked loop (PLL) that requires a constant frequency BCLK{0/1}_DP, BCLK{0/1}_DN input, with exceptions for spread spectrum clocking. DC specifications for the BCLK{0/1}_DP, BCLK{0/1}_DN inputs are provided in Table 7-15. 7.1.5.1 PLL Power Supply An on-die PLL filter solution is implemented on the processor. Refer to Table 7-10 for DC specifications. 7.1.6 Joint Test Action Group (JTAG) and Test Access Port (TAP) Signals Due to the voltage levels supported by other components in the JTAG and Test Access Port (TAP) logic, Intel recommends the processor be first in the TAP chain, followed by any other components within the system. A translation buffer should be used to connect to the rest of the chain, unless one of the other components is capable of accepting an input of the appropriate voltage. Two copies of each signal may be required with each driving a different voltage level. 7.1.7 Processor Sideband Signals The processor includes asynchronous sideband signals that provide asynchronous input, output or I/O signals between the processor and the platform or PHC.Details are in Table 7-5. All processor asynchronous sideband input signals are required to be asserted/de- asserted for a defined number of BCLKs for the processor to recognize the proper signal state. 7.1.8 Power, Ground and Sense Signals Processors also include various other signals including power/ground and sense points. Details are in Table 7-5. 7.1.8.1 Power and Ground Lands All VCC, VCCPLL, VSA, VCCD, VTTA, and VTTD lands must be connected to their respective processor power planes, while all VSS lands must be connected to the system ground plane. For clean on-chip power distribution, processors include lands for all required voltage supplies. The lands are listed in Table 7-1. Table 7-1. Power and Ground Lands (Sheet 1 of 2) Power and Ground Lands Number of Lands Comments VCC 208 Each VCC land must be supplied with the voltage determined by the SVID Bus signals. Table 7-3 defines the voltage level associated with each core SVID pattern. VCC has a VBOOT setting of 0.0V. VCCPLL 3 Each VCCPLL land is connected to a 1.70 V supply to power the Phase Lock Loop (PLL) clock generation circuitry. An on-die PLL filter solution is implemented within the processor. Datasheet 55 Electrical Specifications 7.1.8.2 Decoupling Guidelines Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. Large electrolytic bulk capacitors (CBULK) help maintain the output voltage during current transients; such as transients when coming out of an idle condition. Care must be used in the baseboard design to ensure that the voltages provided to the processor remain within the specifications listed in Table 7-10. Failure to do so can result in timing violations or reduced lifetime of the processor. 7.1.8.3 Voltage Identification (VID) The reference voltage or the VID setting is set using the SVID communication bus between the processor and the voltage regulator controller chip. The VID settings are the nominal voltages to be delivered to the processor VCC, VSA, VCCD lands. Table 7-3 specifies the reference voltage level corresponding to the VID value transmitted over serial VID. The VID codes will change due to temperature and/or current load changes to minimize the power and to maximize the performance of the part. The specifications are set so that a voltage regulator can operate with all supported frequencies. Individual processor VID values may be calibrated during manufacturing such that two processor units with the same core frequency may have different default VID settings. The processor uses voltage identification signals to support automatic selection of VCC, VSA, and VCCD power supply voltages. If the processor socket is empty (SKTOCC_N high), or a "not supported" response is received from the SVID bus, the voltage regulation circuit cannot supply the voltage that is requested; the voltage regulator must disable itself or not power on. The Vout MAX register (30h) is programmed by the processor to set the maximum supported VID code and if the programmed VID code is higher than the VID supported by the VR, the VR will respond with a "not supported" acknowledgement. 7.1.8.3.1 Serial Voltage Identification (SVID) Commands The processor provides the ability to operate while transitioning to a new VID setting and its associated processor voltage rails (VCC, VSA, and VCCD). This is represented by a DC shift. It should be noted that a low-to-high or high-to-low voltage state change may result in as many VID transitions as necessary to reach the target voltage. Transitions above the maximum specified VID are not supported. The processor supports the following VR commands: ? SetVID_fast (20mV/?s for VCC, 10mV/?s for VSA/VCCD), VCCD_01 VCCD_23 51 Each VCCD land is connected to a switchable 1.50V and 1.35V supply to provide power to the processor DDR3 interface. These supplies also power the DDR3 memory subsystem. VCCD is also controlled by the SVID Bus. VCCD is the generic term for VCCD_01, VCCD_23. VTTA 14 VTTA lands must be supplied by a fixed 1.0V supply. VTTD 19 VTTD lands must be supplied by a fixed 1.0V supply. VSA 25 Each VSA land must be supplied with the voltage determined by the SVID Bus signals, typically set at 0.940V. VSA has a VBOOT setting of 0.9V. VSS 548 Ground Table 7-1. Power and Ground Lands (Sheet 2 of 2) Power and Ground Lands Number of Lands Comments Electrical Specifications 56 Datasheet ? SetVID_slow (5mV/?s for VCC, 2.5mV/?s for VSA/VCCD), and ? Slew Rate Decay (downward voltage only and it is a function of the output capacitance time constant) commands. Table 7-3 includes SVID step sizes and DC shift ranges. Minimum and maximum voltages must be maintained as shown in Table 7-10. The VRM or EVRD used must be capable of regulating its output to the value defined by the new VID. Power source characteristics must be ensured to be stable when the supply to the voltage regulator is stable. 7.1.8.3.2 SetVID Fast Command The SetVID-fast command contains the target VID in the payload byte. The range of voltage is defined in the VID table. The VR should ramp to the new VID setting with a fast slew rate as defined in the slew rate data register; typically, 10 to 20 mV/?s depending on platform, voltage rail, and the amount of decoupling capacitance. The SetVID-fast command is preemptive; the VR interrupts its current processes and moves to the new VID. The SetVID-fast command operates on one VR address at a time. This command is used in the processor for package C6 fast exit and entry. 7.1.8.3.3 SetVID Slow Command The SetVID-slow command contains the target VID in the payload byte. The range of voltage is defined in the VID table. The VR should ramp to the new VID setting with a "slow" slew rate as defined in the slow slew rate data register. The SetVID_Slow is 1/4 slower than the SetVID_fast slew rate. The SetVID-slow command is preemptive; that is, the VR interrupts its current processes and moves to the new VID. This is the instruction used for normal P-state voltage change. This command is used in the processor for the Intel Enhanced SpeedStep Technology transitions. 7.1.8.3.4 SetVID Decay Command The SetVID-Decay command is the slowest of the DVID transitions. It is only used for VID down transitions. The VR does not control the slew rate; the output voltage declines with the output load current only. The SetVID-Decay command is preemptive; that is, the VR interrupts its current processes and moves to the new VID. 7.1.8.3.5 SVID Power State Functions – SetPS The processor has three power state functions and these states will be set seamlessly with the SVID bus using the SetPS command. Based on the power state command, the SetPS commands send information to the VR controller to configure the VR to improve efficiency, especially at light loads. For example, typical power states are: ? PS(00h): Represents full power or active mode ? PS(01h): Represents a light load 5A to 20A ? PS(02h): Represents a very light load <5A The VR may change its configuration to meet the processor power needs with greater efficiency. For example, it may reduce the number of active phases, transition from CCM (Continuous Conduction Mode) to DCM (Discontinuous Conduction Mode) mode, Datasheet 57 Electrical Specifications reduce the switching frequency or pulse skip, or change to asynchronous regulation. For example, typical power states are 00h = run in normal mode; a command of 01h= shed phases mode, and an 02h=pulse skip. The VR may reduce the number of active phases from PS(00h) to PS(01h) or PS(00h) to PS(02h) for example. There are multiple VR design schemes that can be used to maintain a greater efficiency in these different power states; work with your VR controller suppliers for optimizations. The SetPS command sends a byte that is encoded as to what power state the VR should transition to. If a power state is not supported by the controller, the slave should acknowledge with command rejected (11b). If the VR is in a low-power state and receives a SetVID command moving the VID up, the VR exits the low-power state to normal mode (PS0) to move the voltage up as fast as possible. The processor must re-issue the low-power state (PS1 or PS2) command if it is in a low-current condition at the new higher voltage. See Figure 7-2 for VR power state transitions. 7.1.8.3.6 SVID Voltage Rail Addressing The processor addresses four different voltage rail control segments within VR12 (VCC, VCCD_01, VCCD_23, and VSA). The SVID data packet contains a 4-bit addressing code. Notes: 1. Check with VR vendors for determining the physical address assignment method for their controllers. 2. VR addressing is assigned on a per voltage rail basis. Figure 7-2. Voltage Regulator (VR) Power-State Transitions PS0 PS2 PS1 Table 7-2. Serial Voltage Identification (SVID) Address Usage PWM Address (Hex) Processor 00 Vcc 01 Vsa 02 VCCD_01 03 +1 not used 04 VCCD_23 05 +1 not used Electrical Specifications 58 Datasheet 3. Dual VR controllers will have two addresses with the lowest order address, always being the higher phase count. 4. For future platform flexibility, the VR controller should include an address offset, as shown with +1 not used. Notes: 1. 00h = Off State 2. VID Range HEX 01-32 are not used by the processor. 3. For VID Ranges supported, see Table 7-10. 4. VCCD is a fixed voltage of 1.35V or 1.5V. Table 7-3. VR12.0 Reference Code Voltage Identification (VID) Table Hex VCC, VSA, VCCD Hex VCC, VSA, VCCD Hex VCC, VSA, VCCD Hex VCC, VSA, VCCD Hex VCC, VSA, VCCD Hex VCC, VSA, VCCD 00 0.00000 55 0.67000 78 0.84500 9B 1.02000 BE 1.19500 E1 1.37000 33 0.50000 56 0.67500 79 0.85000 9C 1.02500 BF 1.20000 E2 1.37500 34 0.50500 57 0.68000 7A 0.85500 9D 1.03000 C0 1.20500 E3 1.38000 35 0.51000 58 0.68500 7B 0.86000 9E 1.03500 C1 1.21000 E4 1.38500 36 0.51500 59 0.69000 7C 0.86500 9F 1.04000 C2 1.21500 E5 1.39000 37 0.52000 5A 0.69500 7D 0.87000 A0 1.04500 C3 1.22000 E6 1.39500 38 0.52500 5B 0.70000 7E 0.87500 A1 1.05000 C4 1.22500 E7 1.40000 39 0.53000 5C 0.70500 7F 0.88000 A2 1.05500 C5 1.23000 E8 1.40500 3A 0.53500 5D 0.71000 80 0.88500 A3 1.06000 C6 1.23500 E9 1.41000 3B 0.54000 5E 0.71500 81 0.89000 A4 1.06500 C7 1.24000 EA 1.41500 3C 0.54500 5F 0.72000 82 0.89500 A5 1.07000 C8 1.24500 EB 1.42000 3D 0.55000 60 0.72500 83 0.90000 A6 1.07500 C9 1.25000 EC 1.42500 3E 0.55500 61 0.73000 84 0.90500 A7 1.08000 CA 1.25500 ED 1.43000 3F 0.56000 62 0.73500 85 0.91000 A8 1.08500 CB 1.26000 EE 1.43500 40 0.56500 63 0.74000 86 0.91500 A9 1.09000 CC 1.26500 EF 1.44000 41 0.57000 64 0.74500 87 0.92000 AA 1.09500 CD 1.27000 F0 1.44500 42 0.57500 65 0.75000 88 0.92500 AB 1.10000 CE 1.27500 F1 1.45000 43 0.58000 66 0.75500 89 0.93000 AC 1.10500 CF 1.28000 F2 1.45500 44 0.58500 67 0.76000 8A 0.93500 AD 1.11000 D0 1.28500 F3 1.46000 45 0.59000 68 0.76500 8B 0.94000 AE 1.11500 D1 1.29000 F4 1.46500 46 0.59500 69 0.77000 8C 0.94500 AF 1.12000 D2 1.29500 F5 1.47000 47 0.60000 6A 0.77500 8D 0.95000 B0 1.12500 D3 1.30000 F6 1.47500 48 0.60500 6B 0.78000 8E 0.95500 B1 1.13000 D4 1.30500 F7 1.48000 49 0.61000 6C 0.78500 8F 0.96000 B2 1.13500 D5 1.31000 F8 1.48500 4A 0.61500 6D 0.79000 90 0.96500 B3 1.14000 D6 1.31500 F9 1.49000 4B 0.62000 6E 0.79500 91 0.97000 B4 1.14500 D7 1.32000 FA 1.49500 4C 0.62500 6F 0.80000 92 0.97500 B5 1.15000 D8 1.32500 FB 1.50000 4D 0.63000 70 0.80500 93 0.98000 B6 1.15500 D9 1.33000 FC 1.50500 4E 0.63500 71 0.81000 94 0.98500 B7 1.16000 DA 1.33500 FD 1.51000 4F 0.64000 72 0.81500 95 0.99000 B8 1.16500 DB 1.34000 FE 1.51500 50 0.64500 73 0.82000 96 0.99500 B9 1.17000 DC 1.34500 FF 1.52000 51 0.65000 74 0.82500 97 1.00000 BA 1.17500 DD 1.35000 52 0.65500 75 0.83000 98 1.00500 BB 1.18000 DE 1.35500 53 0.66000 76 0.83500 99 1.01000 BC 1.18500 DF 1.36000 54 0.66500 77 0.84000 9A 1.01500 BD 1.19000 E0 1.36500 Datasheet 59 Electrical Specifications 7.1.9 Reserved or Unused Signals All Reserved (RSVD) signals must not be connected. Connection of these signals to VCC, VTTA, VTTD, VCCD, VCCPLL, VSS, or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Chapter 8 for a land listing of the processor and the location of all Reserved (RSVD) signals. For reliable operation, always connect unused inputs or bi-directional signals to an appropriate signal level. Unused active high inputs should be connected through a resistor to ground (VSS). Unused outputs may be left unconnected; however, this may interfere with some Test Access Port (TAP) functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bi-directional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability. 7.2 Signal Group Summary Signals are grouped by buffer type and similar characteristics as listed in Table 7-5. The buffer type indicates which signaling technology and specifications apply to the signals. Note: 1. Qualifier for a buffer type. Table 7-4. Signal Description Buffer Types Signal Description Analog Analog reference or output. May be used as a threshold voltage or for buffer compensation Asynchronous Signal has no timing relationship with any system reference clock. CMOS CMOS buffers: 1.0V or 1.5V tolerant DDR3 DDR3 buffers: 1.5V and 1.35V tolerant DMI2 Direct Media Interface Gen 2 signals. These signals are compatible with PCI Express* 2.0 and 1.0 Signaling Environment AC Specifications. Open Drain CMOS Open Drain CMOS (ODCMOS) buffers: 1.0V tolerant PCI Express* PCI Express* interface signals. These signals are compatible with PCI Express 3.0 Signalling Environment AC Specifications and are AC coupled. The buffers are not 3.3-V tolerant. Refer to the PCI Express specification. Reference Voltage reference signal. SSTL Source Series Terminated Logic (JEDEC SSTL_15) Table 7-5. Signal Groups (Sheet 1 of 3) Differential / Single Ended Buffer Type Signals1 DDR3 Reference Clocks2 Differential SSTL Output DDR{0/1/2/3}_CLK_D[N/P][3:0] DDR3 Command Signals2 Single ended SSTL Output DDR{0/1/2/3}_BA[2:0] DDR{0/1/2/3}_CAS_N DDR{0/1/2/3}_MA[15:00] DDR{0/1/2/3}_MA_PAR DDR{0/1/2/3}_RAS_N DDR{0/1/2/3}_WE_N CMOS1.5v Output DDR_RESET_C{01/23}_N Electrical Specifications 60 Datasheet DDR3 Control Signals2 Single ended CMOS1.5v Output DDR{0/1/2/3}_CS_N[9:0] DDR{0/1/2/3}_ODT[5:0] DDR{0/1/2/3}_CKE[5:0] Reference Output DDR_VREFDQTX_C{01/23} Reference Input DDR_VREFDQRX_C{01/23} DDR{01/23}_RCOMP[2:0] DDR3 Data Signals2 Differential SSTL Input/Output DDR{0/1/2/3}_DQS_D[N/P][17:00] Single ended SSTL Input/Output DDR{0/1/2/3}_DQ[63:00] SSTL Input DDR{0/1/2/3}_PAR_ERR_N DDR3 Miscellaneous Signals2 Single ended CMOS1.5v Input DRAM_PWR_OK_C{01/23} PCI Express* Port 1, 2, and 3 Signals Differential PCI Express* Input PE1A_RX_D[N/P][3:0] PE1B_RX_D[N/P][7:4] PE2A_RX_D[N/P][3:0] PE2B_RX_D[N/P][7:4] PE2C_RX_D[N/P][11:8] PE2D_RX_D[N/P][15:12] PE3A_RX_D[N/P][3:0] PE3B_RX_D[N/P][7:4] PE3C_RX_D[N/P][11:8] PE3D_RX_D[N/P][15:12] Differential PCI Express* Output PE1A_TX_D[N/P][3:0] PE1B_TX_D[N/P][7:4] PE2A_TX_D[N/P][3:0] PE2B_TX_D[N/P][7:4] PE2C_TX_D[N/P][11:8] PE2D_TX_D[N/P][15:12] PE3A_TX_D[N/P][3:0] PE3B_TX_D[N/P][7:4] PE3C_TX_D[N/P][11:8] PE3D_TX_D[N/P][15:12] PCI Express* Miscellaneous Signals Single ended Analog Input PE_RBIAS_SENSE Reference Input/Output PE_RBIAS PE_VREF_CAP DMI2/PCI Express* Signals Differential DMI2 Input DMI_RX_D[N/P][3:0] DMI2 Output DMI_TX_D[N/P][3:0] Platform Environmental Control Interface (PECI) Single ended PECI PECI System Reference Clock (BCLK{0/1}) Differential CMOS1.0v Input BCLK{0/1}_D[N/P] SMBus Table 7-5. Signal Groups (Sheet 2 of 3) Differential / Single Ended Buffer Type Signals1 Datasheet 61 Electrical Specifications Notes: 1. Refer to Chapter 6 for signal description details. 2. DDR{0/1/2/3} refers to DDR3 Channel 0, DDR3 Channel 1, DDR3 Channel 2 and DDR3 Channel 3. Single ended Open Drain CMOS Input/Output DDR_SCL_C{01/23} DDR_SDA_C{01/23} PEHPSCL PEHPSDA JTAG and TAP Signals Single ended CMOS1.0v Input TCK, TDI, TMS, TRST_N CMOS1.0v Input/Output PREQ_N CMOS1.0v Output PRDY_N Open Drain CMOS Input/Output BPM_N[7:0] EAR_N Open Drain CMOS Output TDO Serial VID Interface (SVID) Signals Single ended CMOS1.0v Input SVIDALERT_N Open Drain CMOS Input/Output SVIDDATA Open Drain CMOS Output SVIDCLK Processor Asynchronous Sideband Signals Single ended CMOS1.0v Input BIST_ENABLE PWRGOOD PMSYNC RESET_N SAFE_MODE_BOOT TXT_AGENT TXT_PLTEN Open Drain CMOS Input/Output CAT_ERR_N MEM_HOT_C{01/23}_N PROCHOT_N Open Drain CMOS Output ERROR_N[2:0] THERMTRIP_N Miscellaneous Signals N/A Output IVT_ID_N SKTOCC_N Power/Other Signals Power / Ground VCC, VTTA, VTTD, VCCD_01, VCCD_23,VCCPLL, VSA and VSS Sense Points VCC_SENSE VSS_VCC_SENSE VSS_VTTD_SENSE VTTD_SENSE VSA_SENSE VSS_VSA_SENSE Table 7-5. Signal Groups (Sheet 3 of 3) Differential / Single Ended Buffer Type Signals1 Electrical Specifications 62 Datasheet Notes: 1. Refer to Table 7-17 for details on the RON (Buffer on Resistance) value for this signal. 7.3 Power-On Configuration (POC) Options Several configuration options can be configured by hardware. The processor samples its hardware configuration at reset, on the active-to-inactive transition of RESET_N, or upon assertion of PWRGOOD (inactive-to-active transition). For specifics on these options, refer to Table 7-7. The sampled information configures the processor for subsequent operation. These configuration options cannot be changed, except by another reset transition of the latching signal (RESET_N or PWRGOOD). Notes: 1. Output tri-state option enables Fault Resilient Booting (FRB). The RESET_N signal is used to latch PROCHOT_N for enabling FRB mode. 2. BIST_ENABLE is sampled at RESET_N de-assertion (on the falling edge). 3. This signal is sampled after PWRGOOD assertion. 7.4 Absolute Maximum and Minimum Ratings Table 7-8 specifies absolute maximum and minimum ratings. At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional; however, with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits. Although the processor contains protective circuitry to resist damage from Electro- Static Discharge (ESD), precautions should always be taken to avoid high static voltages or electric fields. Table 7-6. Signals with On-Die Termination Signal Name Pull-Up / Pull-Down Rail Value Units Notes DDR{0/1}_PAR_ERR_N Pull-Up VCCD_01 65 Ω DDR{2/3}_PAR_ERR_N Pul-Up VCCD_23 65 Ω TXT_AGENT Pull-Down VSS 2K Ω SAFE_MODE_BOOT Pull-Down VSS 2K Ω BIST_ENABLE Pul-Up VTT 2K Ω TXT_PLTEN Pul-Up VTT 2K Ω EAR_N Pull-Up VTT 2K Ω 1 Table 7-7. Power-On Configuration Option Lands Configuration Option Land Name Notes Output tri state PROCHOT_N 1 Execute BIST (Built-In Self Test) BIST_ENABLE 2 Enable Intel? Trusted Execution Technology (Intel? TXT) Platform TXT_PLTEN 3 Power-up Sequence Halt for ITP configuration EAR_N 3 Enable Intel Trusted Execution Technology (Intel TXT) Agent TXT_AGENT 3 Enable Safe Mode Boot SAFE_MODE_BOOT 3 Datasheet 63 Electrical Specifications Notes: 1. For functional operation, all processor electrical, signal quality, mechanical, and thermal specifications must be satisfied. 2. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor. 7.4.1 Storage Conditions Specifications Environmental storage condition limits define the temperature and relative humidity limits to which the device is exposed to while being stored in a Moisture Barrier Bag. The specified storage conditions are for component level prior to board attach (see notes in Table 7-9 for post board attach limits). Table 7-9 specifies absolute maximum and minimum storage temperature limits that represent the maximum or minimum device condition beyond which damage, latent or otherwise, may occur. The table also specifies sustained storage temperature, relative humidity, and time-duration limits. These limits specify the maximum or minimum device storage conditions for a sustained period of time. At conditions outside sustained limits, but within absolute maximum and minimum ratings, quality and reliability may be affected. Notes: 1. Storage conditions are applicable to storage environments only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device. For functional operation, refer to the processor case temperature specifications in the appropriate processor Thermal Mechanical Specifications and Design Guide (see Related Documents section). Table 7-8. Processor Absolute Minimum and Maximum Ratings Symbol Parameter Min Max Unit Notes1,2 VCC Processor core voltage with respect to VSS -0.3 1.4 V VCCPLL Processor PLL voltage with respect to VSS -0.3 2.0 V VCCD Processor I/O supply voltage for DDR3 (standard voltage) with respect to VSS -0.3 1.85 V VCCD Processor I/O supply voltage for DDR3L (low Voltage) with respect to VSS -0.3 1.7 V VSA Processor SA voltage with respect to VSS -0.3 1.4 V VTTA VTTD Processor analog I/O voltage with respect to VSS -0.3 1.4 V Table 7-9. Storage Condition Ratings Symbol Parameter Min Max Unit Tabsolute storage The minimum/maximum device storage temperature beyond which damage (latent or otherwise) may occur when subjected to for any length of time. -25 125 °C Tsustained storage The minimum/maximum device storage temperature for a sustained period of time. -5 40 °C Tshort term storage The ambient storage temperature (in shipping media) for a short period of time. -20 85 °C RHsustained storage The maximum device storage relative humidity for a sustained period of time. 60% @ 24 °C Timesustained storage A prolonged or extended period of time; typically associated with sustained storage conditions Unopened bag, includes 6 months storage time by customer. 0 30 months Timeshort term storage A short period of time (in shipping media). 0 72 hours Electrical Specifications 64 Datasheet 2. These ratings apply to the Intel component and do not include the tray or packaging. 3. Failure to adhere to this specification can affect the long-term reliability of the processor. 4. Non-operating storage limits post board attach: Storage condition limits for the component once attached to the application board are not specified. Intel does not conduct component level certification assessments post board attach given the multitude of attach methods, socket types and board types used by customers. Provided as general guidance only, Intel board products are specified and certified to meet the following temperature and humidity limits (Non-Operating Temperature Limit: -40 °C to 70 °C and Humidity: 50% to 90%, non condensing with a maximum wet bulb of 28 °C). 5. Device storage temperature qualification methods follow JEDEC* High and Low Temperature Storage Life Standards: JESD22-A119 (low temperature) and JESD22-A103 (high temperature). 7.5 DC Specifications DC specifications are defined at the processor pads, unless otherwise noted. DC specifications are only valid while meeting specifications for case temperature, clock frequency, and input voltages. Care should be taken to read all notes associated with each specification. For case temperature specifications, refer to the appropriate processor Thermal Mechanical Specifications and Design Guide (see Related Documents section). 7.5.1 Voltage and Current Specifications Notes: 1. Unless otherwise noted, all specifications in this table apply to all processors. These specifications are based on pre-silicon characterization. 2. Individual processor VID values may be calibrated during manufacturing such that two devices at the same speed may have different settings. 3. These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. 4. The VCC voltage specification requirements are measured across the remote sense pin pairs (VCC_SENSE and VSS_VCC_SENSE) on the processor package. Voltage measurement should be taken with a DC to 100 MHz bandwidth oscilloscope limit (or DC to 20 MHz for older model oscilloscopes), using a 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external noise from the system is not coupled in the scope probe. Table 7-10. Voltage Specifications Symbol Parameter Voltage Plane Min Typ Max Unit Notes1 VCC VID VCC VID Range — 0.6 — 1.35 V 2, 3 VRetention VID Retention Voltage VID in package C3 and C6 states — — 0.65 — V 2, 3 VCCLL VCC Loadline Slope VCC 0.8 mΩ 3, 4, 7, 8, 11, 13, 18 VCCTOB VCC Tolerance Band VCC 15 mV 3, 4, 7, 8, 11, 13, 18 VCCRipple VCC Ripple Vcc 5 mV 3, 4, 7, 8, 11, 13, 18 VVID_STEP (Vcc, Vsa, Vccd) VID step size during a transition — — 5.0 — mV 10 VCCPLL PLL Voltage VCCPLL 0.955*VCCPLL_TYP 1.7 1.045*VCCPLL_TYP V 11, 12, 13, 17 VCCD (VCCD_01, VCCD_23) I/O Voltage for DDR3 (Standard Voltage) VCCD 0.95*VCCD_TYP 1.5 1.05*VCCD_TYP V 11, 13, 14, 16, 17 VTT (VTTA, VTTD) Uncore Voltage VTT 0.957*VTT_TYP 1.00 1.043*VTT_TYP V 3, 5, 9, 12, 13 VSA_VID Vsa VID Range VSA 0.6 0.940 1.25 V 2, 3, 14, 15 VSA System Agent Voltage VSA VSA_VID - 0.057 VSA_VID VSA_VID + 0.057 V 3, 6, 12, 14, 19 Datasheet 65 Electrical Specifications 5. The VTTA, and VTTD voltage specification requirements are measured across the remote sense pin pairs (VTTD_SENSE and VSS_VTTD_SENSE) on the processor package. Voltage measurement should be taken with a DC to 100 MHz bandwidth oscilloscope limit (or DC to 20MHz for older model oscilloscopes), using a 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external noise from the system is not coupled in the scope probe. 6. The VSA voltage specification requirements are measured across the remote sense pin pairs (VSA_SENSE and VSS_VSA_SENSE) on the processor package. Voltage measurement should be taken with a DC to 100 MHz bandwidth oscilloscope limit (or DC to 20 MHz for older model oscilloscopes), using a 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external noise from the system is not coupled in the scope probe. 7. The processor should not be subjected to any static VCC level that exceeds the VCC_MAX associated with any particular current. Failure to adhere to this specification can shorten processor lifetime. 8. Minimum VCC and maximum ICC are specified at the maximum processor case temperature (TCASE). ICC_MAX is specified at the relative VCC_MAX point on the VCC load line. The processor is capable of drawing ICC_MAX for up to 5 seconds. 9. The processor should not be subjected to any static VTTA, VTTD level that exceeds the VTT_MAX associated with any particular current. Failure to adhere to this specification can shorten processor lifetime. 10. This specification represents the VCC reduction or VCC increase due to each VID transition, see Section 7.1.8.3. 11. Baseboard bandwidth is limited to 20 MHz. 12. N/A 13. DC + AC + Ripple = Total Tolerance 14. For Power State Functions see Section 7.1.8.3.5. 15. VSA_VID does not have a loadline, the output voltage is expected to be the VID value. 16. VCCD tolerance at processor pins. Tolerance for VR at remote sense is ±3.3%*VCCD. 17. The VCCPLL, VCCD01, VCCD23 voltage specification requirements are measured across vias on the platform. Choose VCCPLL, VCCD01, or VCCD23 vias close to the socket and measure with a DC to 100MHz bandwidth oscilloscope limit (or DC to 20 MHz for older model oscilloscopes), using 1.5 pF maximum probe capacitance, and 1M Ω minimum impedance. The maximum length of the ground wire on the probe should be less than 5 mm to ensure external noise from the system is not coupled in the scope probe. 18. VCC has a Vboot setting of 0.0V and is not included in the PWRGOOD indication. 19. VSA has a Vboot setting of 0.9V. Notes: 1. Unless otherwise noted, all specifications in this table apply to all processors. These specifications are based on final silicon characterization. 2. ICC_TDC (Thermal Design Current) is the sustained (DC equivalent) current that the processor is capable of drawing indefinitely and should be used for the voltage regulator thermal assessment. The voltage regulator is responsible for monitoring its temperature and asserting the necessary signal to inform the processor of a thermal excursion. 3. Specification is at TCASE = 50 °C. Characterized by design (not tested). 4. ICCD_01_MAX and ICCD_23_MAX refers only to the processor current draw and does not account for the current consumption by the memory devices. Memory Standby Current is characterized by design and not tested. 5. Minimum VCC and maximum ICC are specified at the maximum processor case temperature (TCASE). ICC_MAX is specified at the relative VCC_MAX point on the VCC load line. The processor is capable of drawing ICC_MAX for up to 5 seconds. Refer to Figure 7-3 for further details on the average processor current draw over various time durations. Table 7-11. Current Specifications Parameter Symbol and Definition Processor TDP / Core Count TDC (A) Max (A) Notes1 ICC Core Supply, Processor Current on VCC 130W 6-core, 4-core 135 165 4, 5 ITT I/O Termination Supply, Processor Current on VTTA/VTTD 130W 6-core, 4-core 20 24 4, 5 ISA System Agent Supply, Processor Current on VSA 130W 6-core, 4-core 20 24 4, 5 ICCD_01 DDR3 Supply, Processor Current VCCD_01 130W 6-core, 4-core 3 4 4, 5 ICCD_23 DDR3 Supply, Processor Current VCCD_23 130W 6-core, 4-core 3 4 4, 5 ICCPLL PLL Supply, Processor Current on VCCPLL 130W 6-core, 4-core 2 2 4, 5 ICCD_01_23, ICCD_23_23 DDR3 Supply, Current on VCCD_01/VCCD_23 in System S3 Standby State 130W 6-core, 4-core — 0.5 4 Electrical Specifications 66 Datasheet 7.5.2 Die Voltage Validation Core voltage (VCC) overshoot events at the processor must meet the specifications in Table 7-12 when measured across the VCC_SENSE and VSS_VCC_SENSE lands. Overshoot events that are < 10 ns in duration may be ignored. These measurements of processor die level overshoot should be taken with a 100 MHz bandwidth limited oscilloscope. 7.5.2.1 VCC Overshoot Specifications The processor can tolerate short transient overshoot events where VCC exceeds the VID voltage when transitioning from a high-to-low current load condition. This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot above VID). These specifications apply to the processor die voltage as measured across the VCC_SENSE and VSS_VCC_SENSE lands. Notes: 1. VOS_MAX is the measured overshoot voltage. 2. TOS_MAX is the measured time duration above VccMAX(I1). 3. Istep: Load Release Current Step, for example, I2 to I1, where I2 > I1. 4. VccMAX(I1) = VID - I1*RLL + 15mV Table 7-12. VCC Overshoot Specifications Symbol Parameter Min Max Units Figure Notes VOS_MAX Magnitude of VCC overshoot above VID — 65 mV 7-3 — TOS_MAX Time duration of VCC overshoot above VccMAX value at the new lighter load — 25 ms 7-3 — Figure 7-3. VCC Overshoot Example Waveform 0 5 10 15 20 25 30 Voltage [V] Time [us] VccMAX (I1) VID + VOS_MAX TOS_MAX VOS_MAX Datasheet 67 Electrical Specifications 7.5.3 Signal DC Specifications DC specifications are defined at the processor pads, unless otherwise noted. DC specifications are only valid while meeting specifications for case temperature, clock frequency, and input voltages. Care should be taken to read all notes associated with each specification. Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. Table 7-13. DDR3 and DDR3L Signal DC Specifications Symbol Parameter Min Typ Max Units Notes1 IIL Input Leakage Current -1.4 — +1.4 mA 10 Data Signals VIL Input Low Voltage — — 0.43*VCCD V 2, 3 VIH Input High Voltage 0.57*VCCD — — V 2, 4, 5 RON DDR3 Data Buffer On Resistance 21 — 31 Ω 6 Data ODT On-Die Termination for Data Signals 45 90 — 55 110 Ω 8 PAR_ERR_N ODT On-Die Termination for Parity Error Signals 59 — 72 Ω Reference Clock Signals, Command, and Data Signals VOL Output Low Voltage — (VCCD/ 2)* (RON /(RON+RVTT_TERM)) — V 2, 7 VOH Output High Voltage — VCCD – ((VCCD/ 2)* (RON/(RON+RVTT_TERM)) — V 2, 5, 7 Reference Clock Signal RON DDR3 Clock Buffer On Resistance 21 — 31 Ω 6 Command Signals RON DDR3 Command Buffer On Resistance 16 — 24 Ω 6 RON DDR3 Reset Buffer On Resistance 25 — 75 Ω 6 VOL_CMOS1.5v Output Low Voltage, Signals DDR_RESET_ C{01/23}_N — — 0.2*VCCD V 1, 2 VOH_CMOS1.5v Output High Voltage, Signals DDR_RESET_ C{01/23}_N 0.9*VCCD — — V 1, 2 IIL_CMOS1.5v Input Leakage Current -100 — +100 μA 1, 2 Control Signals RON DDR3 Control Buffer On Resistance 21 — 31 Ω 6 DDR01_RCOMP[0] COMP Resistance 128.7 130 131.3 Ω 9, 12 DDR01_RCOMP[1] COMP Resistance 25.839 26.1 26.361 Ω 9, 12 DDR01_RCOMP[2] COMP Resistance 198 200 202 Ω 9, 12 DDR23_RCOMP[0] COMP Resistance 128.7 130 131.3 Ω 9, 12 DDR23_RCOMP[1] COMP Resistance 25.839 26.1 26.361 Ω 9, 12 DDR23_RCOMP[2] COMP Resistance 198 200 202 Ω 9, 12 DDR3 Miscellaneous Signals VIL Input Low Voltage DRAM_PWR_OK_C{01/23} — — 0.55*VCCD + 0.2 V 2, 3, 11, 13 VIH Input High Voltage DRAM_PWR_OK_C{01/23} 0.55*VCCD + 0.3 — — V 2, 4, 5, 11, 13 Electrical Specifications 68 Datasheet 2. The voltage rail VCCD which will be set to 1.50V or 1.35V nominal depending on the voltage of all DIMMs connected to the processor. 3. VIL is the maximum voltage level at a receiving agent that will be interpreted as a logical low value. 4. VIH is the minimum voltage level at a receiving agent that will be interpreted as a logical high value. 5. VIH and VOH may experience excursions above VCCD. However, input signal drivers must comply with the signal quality specifications. 6. This is the pull down driver resistance. Reset drive does not have a termination. 7. RVTT_TERM is the termination on the DIMM and not controlled by the processor. Refer to the applicable DIMM datasheet. 8. The minimum and maximum values for these signals are programmable by BIOS to one of the pairs. 9. COMP resistance must be provided on the system board with 1% resistors. DDR01_RCOMP[2:0] and DDR23_RCOMP[2:0] resistors are terminated to VSS. 10. Input leakage current is specified for all DDR3 signals. 11. DRAM_PWR_OK_C{01/23} must have a maximum of 30 ns rise or fall time over VCCD * 0.55 +300mV and -200mV and the edge must be monotonic. 12. The DDR01/23_RCOMP error tolerance is ±15% from the compensated value. 13. DRAM_PWR_OK_C{01/23}: Data Scrambling must be enabled for production environments. Disabling Data scrambling can be used for debug and testing purposes only. Running systems with Data Scrambling off will make the configuration out of specification. For details, refer to the processor Datasheet, Volume 2 of 2 (see Related Documents section). Notes: 1. VTTD supplies the PECI interface. PECI behavior does not affect VTTD minimum/maximum specification 2. It is expected that the PECI driver will take into account the variance in the receiver input thresholds and be able to drive its output within safe limits (-0.150V to 0.275*VTTD for the low level and 0.725*VTTD to VTTD+0.150V for the high level). 3. The leakage specification applies to powered devices on the PECI bus. 4. One node is counted for each client and one node for the system host. Extended trace lengths might appear as additional nodes. 5. Excessive capacitive loading on the PECI line may slow down the signal rise/fall times and consequently limit the maximum bit rate at which the interface can operate. Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. These specifications are specified at the processor pad. 2. Crossing Voltage is defined as the instantaneous voltage value when the rising edge of BCLK{0/1}_DN is equal to the falling edge of BCLK{0/1}_DP. 3. VHavg is the statistical average of the VH measured by the oscilloscope. Table 7-14. PECI DC Specifications Symbol Definition and Conditions Min Max Units Figure Notes1 VIn Input Voltage Range -0.150 VTT V — — VHysteresis Hysteresis 0.100 * VTT — V — — VN Negative-edge threshold voltage 0.275 * VTT 0.500 * VTT V 7-1 2 VP Positive-edge threshold voltage 0.550 * VTT 0.725 * VTT V 7-1 2 ISOURCE High level output source VOH = 0.75 * VTT -6.0 — mA — — ILeak+ High impedance state leakage to VTTD (Vleak = VOL) 50 200 ?A — 3 RON Buffer On Resistance 20 36 Ω — CBus Bus capacitance per node N/A 10 pF — 4, 5 VNoise Signal noise immunity above 300 MHz 0.100 * VTT N/A Vp-p — — Output Edge Rate (50 ohm to VSS, between VIL and VIH) 1.5 4 V/ns — — Table 7-15. System Reference Clock (BCLK{0/1}) DC Specifications Symbol Parameter Signal Min Max Unit Figure Notes1 VBCLK_diff_ih Differential Input High Voltage Differential 0.150 N/A V — VBCLK_diff_il Differential Input Low Voltage Differential — -0.150 V — Vcross (abs) Absolute Crossing Point Single Ended 0.250 0.550 V 2, 4, 7 Vcross(rel) Relative Crossing Point Single Ended 0.250 + 0.5*(VHavg – 0.700) 0.550 + 0.5*(VHavg – 0.700) V 3, 4, 5 ΔVcross Range of Crossing Points Single Ended N/A 0.140 V 6 VTH Threshold Voltage Single Ended Vcross - 0.1 Vcross + 0.1 V — — IIL Input Leakage Current N/A — 1.50 μA — 8 Cpad Pad Capacitance N/A 0.9 1.2 pF — — Datasheet 69 Electrical Specifications 4. The crossing point must meet the absolute and relative crossing point specifications simultaneously. 5. VHavg can be measured directly using "Vtop" on Agilent* and "High" on Tektronix oscilloscopes. 6. VCROSS is defined as the total variation of all crossing voltages as defined in Note 3. 7. The rising edge of BCLK{0/1}_DN is equal to the falling edge of BCLK{0/1}_DP. 8. For Vin between 0 and VIH. Note: 1. These signals are measured between VIL and VIH. 2. The signal edge rate must be met or the signal must transition monotonically to the asserted state. Notes: Table 7-16. SMBus DC Specifications Symbol Parameter Min Max Units Notes VIL Input Low Voltage — 0.3*VTT V VIH Input High Voltage 0.7*VTT — V VHysteresis Hysteresis 0.1*VTT — V VOL Output Low Voltage — 0.2*VTT V RON Buffer On Resistance 4 14 Ω IL Leakage Current 50 200 μA Output Edge Rate (50 ohm to VTT, between VIL and VIH) 0.05 0.6 V/ns Table 7-17. Joint Test Action Group (JTAG) and Test Access Point (TAP) Signals DC Specifications Symbol Parameter Min Max Units Notes VIL Input Low Voltage — 0.3*VTT V VIH Input High Voltage 0.7*VTT — V VIL Input Low Voltage: PREQ_N — 0.4*VTT V VIH Input High Voltage: PREQ_N 0.8*VTT — V VOL Output Low Voltage — 0.2*VTT V VHysteresis Hysteresis 0.1*VTT — V RON Buffer On Resistance BPM_N[7:0], PRDY_N, TDO 4 14 Ω IIL Input Leakage Current 50 200 μA Input Edge Rate Signals: BPM_N[7:0], EAR_N, PREQ_N, TCK, TDI, TMS, TRST_N 0.05 — V/ns 1, 2 Output Edge Rate (50 ohm to VTT) Signal: BPM_N[7:0], PRDY_N, TDO 0.2 1.5 V/ns 1 Table 7-18. Serial VID Interface (SVID) DC Specifications Symbol Parameter Min Typ Max Units Notes VTT Processor I/O Voltage VTT – 3% 1.0 VTT + 3% V VIL Input Low Voltage Signals SVIDDATA, SVIDALERT_N — — 0.4*VTT V 1 VIH Input High Voltage Signals SVIDDATA, SVIDALERT_N 0.7*VTT — — V 1 VOL Output Low Voltage Signals SVIDCLK, SVIDDATA — — 0.3*VTT V 1 VHysteresis Hysteresis 0.05*VTT — — V 1 RON Buffer On Resistance Signals SVIDCLK, SVIDDATA 4 — 14 W 2 IIL Input Leakage Current ±50 — ±200 μA 3 Input Edge Rate Signal: SVIDALERT_N 0.05 — — V/ns 4, 5 Output Edge Rate (50 ohm to VTT) 0.20 — 1.5 V/ns 4 Electrical Specifications 70 Datasheet 1. VTT refers to instantaneous VTT. 2. Measured at 0.31*VTT 3. Vin between 0V and VTT 4. These are measured between VIL and VIH. 5. The signal edge rate must be met or the signal must transition monotonically to the asserted state. Notes: 1. This table applies to the processor sideband and miscellaneous signals specified in Table 7-5. 2. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 3. These signals are measured between VIL and VIH. Table 7-19. Processor Asynchronous Sideband DC Specifications Symbol Parameter Min Max Units Notes CMOS1.0v Signals VIL_CMOS1.0v Input Low Voltage — 0.3*VTT V 1, 2 VIH_CMOS1.0v Input High Voltage 0.7*VTT — V 1, 2 VHysteresis Hysteresis 0.1*VTT — V 1, 2 IIL_CMOS1.0v Input Leakage Current 50 200 μA 1, 2 Open Drain CMOS (ODCMOS) Signals VIL_ODCMOS Input Low Voltage Signals: MEM_HOT_C01/23_N, PROCHOT_N — 0.3*VTT V 1, 2 VIL_ODCMOS Input Low Voltage Signals: CAT_ERR_N — 0.4*VTT V 1,2 VIH_ODCMOS Input High Voltage 0.7*VTT — V 1, 2 VOL_ODCMOS Output Low Voltage — 0.2*VTT V 1, 2 VHysteresis Hysteresis Signals: MEM_HOT_C01/23_N, PROCHOT_N — 0.1*VTT V 1, 2 VHysteresis Hysteresis Signal: CAT_ERR_N 0.05*VTT — V 1, 2 ILeak Input Leakage Current 50 200 μA RON Buffer On Resistance 4 14 W 1, 2 Output Edge Rate Signal:MEM_HOT_C{01/23}_N, ERROR_N[2:0], THERMTRIP, PROCHOT_N 0.05 0.60 V/ns 3 Output Edge Rate Signal: CAT_ERR_N 0.2 1.5 V/ns 3 Table 7-20. Miscellaneous Signals DC Specifications Symbol Parameter Min Typical Max Units Notes IVT_ID_N Signal VO_ABS_MAX Output Absolute Maximum Voltage — 1.10 1.80 V IO Output Current — — 0 μA 1 SKTOCC_N Signal VO_ABS_MAX Output Absolute Maximum Voltage — 3.30 3.50 V IOMAX Output Max Current — — 1 mA Notes: 4. IVT_ID_N land is a no connect on the die. Datasheet 71 Electrical Specifications 7.5.3.1 PCI Express* DC Specifications The processor DC specifications for the PCI Express* are available in the PCI Express Base Specification, Revision 3.0. This document will provide only the processor exceptions to the PCI Express Base Specification, Revision 3.0. 7.5.3.2 DMI2/PCI Express* DC Specifications The processor DC specifications for the DMI2/PCI Express* are available in the PCI Express Base Specification, Revisions 2.0 and 1.0. This document will provide only the processor exceptions to the PCI Express Base Specification, Revisions 2.0 and 1.0. 7.5.3.3 Reset and Miscellaneous Signal DC Specifications For a power-on Reset, RESET_N must stay active for at least 3.5 millisecond after VCC and BCLK{0/1} have reached their proper specifications. RESET_N must not be kept asserted for more than 100 ms while PWRGOOD is asserted. RESET_N must be held asserted for at least 3.5 millisecond before it is de-asserted again. RESET_N must be held asserted before PWRGOOD is asserted. This signal does not have on-die termination and must be terminated on the system board. § § Processor Land Listing 72 Datasheet 8 Processor Land Listing This chapter provides the processor land lists. Table 8-1 is a listing of all processor lands ordered alphabetically by land name. Table 8-2 is a listing of all processor lands ordered by land number. 73 Datasheet Processor Land Listing Table 8-1. Land List by Land Name (Sheet 1 of 42) Land Name Land No. Buffer Type Direction BCLK0_DN CM44 CMOS I BCLK0_DP CN43 CMOS I BCLK1_DN BA45 CMOS I BCLK1_DP AW45 CMOS I BIST_ENABLE AT48 CMOS I BPM_N[0] AR43 ODCMOS I/O BPM_N[1] AT44 ODCMOS I/O BPM_N[2] AU43 ODCMOS I/O BPM_N[3] AV44 ODCMOS I/O BPM_N[4] BB44 ODCMOS I/O BPM_N[5] AW43 ODCMOS I/O BPM_N[6] BA43 ODCMOS I/O BPM_N[7] AY44 ODCMOS I/O CAT_ERR_N CC51 ODCMOS I/O CPU_ONLY_RESET AN43 ODCMOS I/O DDR_RESET_C01_N CB18 CMOS1.5 v O DDR_RESET_C23_N AE27 CMOS1.5 v O DDR_SCL_C01 CY42 ODCMOS I/O DDR_SCL_C23 U43 ODCMOS I/O DDR_SDA_C01 CW41 ODCMOS I/O DDR_SDA_C23 R43 ODCMOS I/O DDR_VREFDQRX_C 01 BY16 DC I DDR_VREFDQRX_C 23 J1 DC I DDR_VREFDQTX_C 01 CN41 DC O DDR_VREFDQTX_C 23 P42 DC O DDR0_BA[0] CM28 SSTL O DDR0_BA[1] CN27 SSTL O DDR0_BA[2] CM20 SSTL O DDR0_CAS_N CL29 SSTL O DDR0_CKE[0] CL19 SSTL O DDR0_CKE[1] CM18 SSTL O DDR0_CKE[2] CH20 SSTL O DDR0_CKE[3] CP18 SSTL O DDR0_CKE[4] CF20 SSTL O DDR0_CKE[5] CE19 SSTL O DDR0_CLK_DN[0] CF24 SSTL O DDR0_CLK_DN[1] CE23 SSTL O DDR0_CLK_DN[2] CE21 SSTL O DDR0_CLK_DN[3] CF22 SSTL O DDR0_CLK_DP[0] CH24 SSTL O DDR0_CLK_DP[1] CG23 SSTL O DDR0_CLK_DP[2] CG21 SSTL O DDR0_CLK_DP[3] CH22 SSTL O DDR0_CS_N[0] CN25 SSTL O DDR0_CS_N[1] CH26 SSTL O DDR0_CS_N[2] CC23 SSTL O DDR0_CS_N[3] CB28 SSTL O DDR0_CS_N[4] CG27 SSTL O DDR0_CS_N[5] CF26 SSTL O DDR0_CS_N[6] CB26 SSTL O DDR0_CS_N[7] CC25 SSTL O DDR0_CS_N[8] CL27 SSTL O DDR0_CS_N[9] CK28 SSTL O DDR0_DQ[00] CC7 SSTL I/O DDR0_DQ[01] CD8 SSTL I/O DDR0_DQ[02] CK8 SSTL I/O DDR0_DQ[03] CL9 SSTL I/O DDR0_DQ[04] BY6 SSTL I/O DDR0_DQ[05] CA7 SSTL I/O DDR0_DQ[06] CJ7 SSTL I/O DDR0_DQ[07] CL7 SSTL I/O DDR0_DQ[08] CB2 SSTL I/O DDR0_DQ[09] CB4 SSTL I/O DDR0_DQ[10] CH4 SSTL I/O DDR0_DQ[11] CJ5 SSTL I/O DDR0_DQ[12] CA1 SSTL I/O DDR0_DQ[13] CA3 SSTL I/O DDR0_DQ[14] CG3 SSTL I/O DDR0_DQ[15] CG5 SSTL I/O DDR0_DQ[16] CK12 SSTL I/O DDR0_DQ[17] CM12 SSTL I/O DDR0_DQ[18] CK16 SSTL I/O DDR0_DQ[19] CM16 SSTL I/O DDR0_DQ[20] CG13 SSTL I/O DDR0_DQ[21] CL11 SSTL I/O DDR0_DQ[22] CJ15 SSTL I/O DDR0_DQ[23] CL15 SSTL I/O DDR0_DQ[24] BY10 SSTL I/O DDR0_DQ[25] BY12 SSTL I/O DDR0_DQ[26] CB12 SSTL I/O DDR0_DQ[27] CD12 SSTL I/O DDR0_DQ[28] BW9 SSTL I/O DDR0_DQ[29] CA9 SSTL I/O DDR0_DQ[30] CH10 SSTL I/O Table 8-1. Land List by Land Name (Sheet 2 of 42) Land Name Land No. Buffer Type Direction Datasheet 74 Processor Land Listing DDR0_DQ[31] CF10 SSTL I/O DDR0_DQ[32] CE31 SSTL I/O DDR0_DQ[33] CC31 SSTL I/O DDR0_DQ[34] CE35 SSTL I/O DDR0_DQ[35] CC35 SSTL I/O DDR0_DQ[36] CD30 SSTL I/O DDR0_DQ[37] CB30 SSTL I/O DDR0_DQ[38] CD34 SSTL I/O DDR0_DQ[39] CB34 SSTL I/O DDR0_DQ[40] CL31 SSTL I/O DDR0_DQ[41] CJ31 SSTL I/O DDR0_DQ[42] CL35 SSTL I/O DDR0_DQ[43] CJ35 SSTL I/O DDR0_DQ[44] CK30 SSTL I/O DDR0_DQ[45] CH30 SSTL I/O DDR0_DQ[46] CK34 SSTL I/O DDR0_DQ[47] CH34 SSTL I/O DDR0_DQ[48] CB38 SSTL I/O DDR0_DQ[49] CD38 SSTL I/O DDR0_DQ[50] CE41 SSTL I/O DDR0_DQ[51] CD42 SSTL I/O DDR0_DQ[52] CC37 SSTL I/O DDR0_DQ[53] CE37 SSTL I/O DDR0_DQ[54] CC41 SSTL I/O DDR0_DQ[55] CB42 SSTL I/O DDR0_DQ[56] CH38 SSTL I/O DDR0_DQ[57] CK38 SSTL I/O DDR0_DQ[58] CH42 SSTL I/O DDR0_DQ[59] CK42 SSTL I/O DDR0_DQ[60] CJ37 SSTL I/O DDR0_DQ[61] CL37 SSTL I/O DDR0_DQ[62] CJ41 SSTL I/O DDR0_DQ[63] CL41 SSTL I/O DDR0_DQS_DN[00] CG7 SSTL I/O DDR0_DQS_DN[01] CE3 SSTL I/O DDR0_DQS_DN[02] CH14 SSTL I/O DDR0_DQS_DN[03] CD10 SSTL I/O DDR0_DQS_DN[04] CE33 SSTL I/O DDR0_DQS_DN[05] CL33 SSTL I/O DDR0_DQS_DN[06] CB40 SSTL I/O DDR0_DQS_DN[07] CH40 SSTL I/O DDR0_DQS_DN[08] CE17 SSTL I/O DDR0_DQS_DN[09] CF8 SSTL I/O DDR0_DQS_DN[10] CD4 SSTL I/O Table 8-1. Land List by Land Name (Sheet 3 of 42) Land Name Land No. Buffer Type Direction DDR0_DQS_DN[11] CL13 SSTL I/O DDR0_DQS_DN[12] CC11 SSTL I/O DDR0_DQS_DN[13] CB32 SSTL I/O DDR0_DQS_DN[14] CH32 SSTL I/O DDR0_DQS_DN[15] CE39 SSTL I/O DDR0_DQS_DN[16] CL39 SSTL I/O DDR0_DQS_DN[17] CF16 SSTL I/O DDR0_DQS_DP[00] CH8 SSTL I/O DDR0_DQS_DP[01] CF4 SSTL I/O DDR0_DQS_DP[02] CK14 SSTL I/O DDR0_DQS_DP[03] CE11 SSTL I/O DDR0_DQS_DP[04] CC33 SSTL I/O DDR0_DQS_DP[05] CJ33 SSTL I/O DDR0_DQS_DP[06] CD40 SSTL I/O DDR0_DQS_DP[07] CK40 SSTL I/O DDR0_DQS_DP[08] CC17 SSTL I/O DDR0_DQS_DP[09] CE7 SSTL I/O DDR0_DQS_DP[10] CC5 SSTL I/O DDR0_DQS_DP[11] CJ13 SSTL I/O DDR0_DQS_DP[12] CB10 SSTL I/O DDR0_DQS_DP[13] CD32 SSTL I/O DDR0_DQS_DP[14] CK32 SSTL I/O DDR0_DQS_DP[15] CC39 SSTL I/O DDR0_DQS_DP[16] CJ39 SSTL I/O DDR0_DQS_DP[17] CD16 SSTL I/O DDR0_MA_PAR CM26 SSTL O DDR0_MA[00] CL25 SSTL O DDR0_MA[01] CR25 SSTL O DDR0_MA[02] CG25 SSTL O DDR0_MA[03] CK24 SSTL O DDR0_MA[04] CM24 SSTL O DDR0_MA[05] CL23 SSTL O DDR0_MA[06] CN23 SSTL O DDR0_MA[07] CM22 SSTL O DDR0_MA[08] CK22 SSTL O DDR0_MA[09] CN21 SSTL O DDR0_MA[10] CK26 SSTL O DDR0_MA[11] CL21 SSTL O DDR0_MA[12] CK20 SSTL O DDR0_MA[13] CG29 SSTL O DDR0_MA[14] CG19 SSTL O DDR0_MA[15] CN19 SSTL O DDR0_ODT[0] CE25 SSTL O DDR0_ODT[1] CE27 SSTL O Table 8-1. Land List by Land Name (Sheet 4 of 42) Land Name Land No. Buffer Type Direction 75 Datasheet Processor Land Listing DDR0_ODT[2] CH28 SSTL O DDR0_ODT[3] CF28 SSTL O DDR0_ODT[4] CB24 SSTL O DDR0_ODT[5] CC27 SSTL O DDR0_PAR_ERR_N CC21 SSTL I DDR0_RAS_N CE29 SSTL O DDR0_WE_N CN29 SSTL O DDR01_RCOMP[0] CA17 Analog I DDR01_RCOMP[1] CC19 Analog I DDR01_RCOMP[2] CB20 Analog I DDR1_BA[0] DB26 SSTL O DDR1_BA[1] DC25 SSTL O DDR1_BA[2] DF18 SSTL O DDR1_CAS_N CY30 SSTL O DDR1_CKE[0] CT20 SSTL O DDR1_CKE[1] CU19 SSTL O DDR1_CKE[2] CY18 SSTL O DDR1_CKE[3] DA17 SSTL O DDR1_CKE[4] CR19 SSTL O DDR1_CKE[5] CT18 SSTL O DDR1_CLK_DN[0] CV20 SSTL O DDR1_CLK_DN[1] CV22 SSTL O DDR1_CLK_DN[2] CY24 SSTL O DDR1_CLK_DN[3] DA21 SSTL O DDR1_CLK_DP[0] CY20 SSTL O DDR1_CLK_DP[1] CY22 SSTL O DDR1_CLK_DP[2] CV24 SSTL O DDR1_CLK_DP[3] DC21 SSTL O DDR1_CS_N[0] DB24 SSTL O DDR1_CS_N[1] CU23 SSTL O DDR1_CS_N[2] CR23 SSTL O DDR1_CS_N[3] CR27 SSTL O DDR1_CS_N[4] CU25 SSTL O DDR1_CS_N[5] CT24 SSTL O DDR1_CS_N[6] DA29 SSTL O DDR1_CS_N[7] CT26 SSTL O DDR1_CS_N[8] CR21 SSTL O DDR1_CS_N[9] DA27 SSTL O DDR1_DQ[00] CP4 SSTL I/O DDR1_DQ[01] CP2 SSTL I/O DDR1_DQ[02] CV4 SSTL I/O DDR1_DQ[03] CY4 SSTL I/O DDR1_DQ[04] CM4 SSTL I/O DDR1_DQ[05] CL3 SSTL I/O Table 8-1. Land List by Land Name (Sheet 5 of 42) Land Name Land No. Buffer Type Direction DDR1_DQ[06] CV2 SSTL I/O DDR1_DQ[07] CW3 SSTL I/O DDR1_DQ[08] DA7 SSTL I/O DDR1_DQ[09] DC7 SSTL I/O DDR1_DQ[10] DC11 SSTL I/O DDR1_DQ[11] DE11 SSTL I/O DDR1_DQ[12] CY6 SSTL I/O DDR1_DQ[13] DB6 SSTL I/O DDR1_DQ[14] DB10 SSTL I/O DDR1_DQ[15] DF10 SSTL I/O DDR1_DQ[16] CR7 SSTL I/O DDR1_DQ[17] CU7 SSTL I/O DDR1_DQ[18] CT10 SSTL I/O DDR1_DQ[19] CP10 SSTL I/O DDR1_DQ[20] CP6 SSTL I/O DDR1_DQ[21] CT6 SSTL I/O DDR1_DQ[22] CW9 SSTL I/O DDR1_DQ[23] CV10 SSTL I/O DDR1_DQ[24] CR13 SSTL I/O DDR1_DQ[25] CU13 SSTL I/O DDR1_DQ[26] CR17 SSTL I/O DDR1_DQ[27] CU17 SSTL I/O DDR1_DQ[28] CT12 SSTL I/O DDR1_DQ[29] CV12 SSTL I/O DDR1_DQ[30] CT16 SSTL I/O DDR1_DQ[31] CV16 SSTL I/O DDR1_DQ[32] CT30 SSTL I/O DDR1_DQ[33] CP30 SSTL I/O DDR1_DQ[34] CT34 SSTL I/O DDR1_DQ[35] CP34 SSTL I/O DDR1_DQ[36] CU29 SSTL I/O DDR1_DQ[37] CR29 SSTL I/O DDR1_DQ[38] CU33 SSTL I/O DDR1_DQ[39] CR33 SSTL I/O DDR1_DQ[40] DA33 SSTL I/O DDR1_DQ[41] DD32 SSTL I/O DDR1_DQ[42] DC35 SSTL I/O DDR1_DQ[43] DA35 SSTL I/O DDR1_DQ[44] DA31 SSTL I/O DDR1_DQ[45] CY32 SSTL I/O DDR1_DQ[46] DF34 SSTL I/O DDR1_DQ[47] DE35 SSTL I/O DDR1_DQ[48] CR37 SSTL I/O DDR1_DQ[49] CU37 SSTL I/O Table 8-1. Land List by Land Name (Sheet 6 of 42) Land Name Land No. Buffer Type Direction Datasheet 76 Processor Land Listing DDR1_DQ[50] CR41 SSTL I/O DDR1_DQ[51] CU41 SSTL I/O DDR1_DQ[52] CT36 SSTL I/O DDR1_DQ[53] CV36 SSTL I/O DDR1_DQ[54] CT40 SSTL I/O DDR1_DQ[55] CV40 SSTL I/O DDR1_DQ[56] DE37 SSTL I/O DDR1_DQ[57] DF38 SSTL I/O DDR1_DQ[58] DD40 SSTL I/O DDR1_DQ[59] DB40 SSTL I/O DDR1_DQ[60] DA37 SSTL I/O DDR1_DQ[61] DC37 SSTL I/O DDR1_DQ[62] DA39 SSTL I/O DDR1_DQ[63] DF40 SSTL I/O DDR1_DQS_DN[00] CT4 SSTL I/O DDR1_DQS_DN[01] DC9 SSTL I/O DDR1_DQS_DN[02] CV8 SSTL I/O DDR1_DQS_DN[03] CR15 SSTL I/O DDR1_DQS_DN[04] CT32 SSTL I/O DDR1_DQS_DN[05] CY34 SSTL I/O DDR1_DQS_DN[06] CR39 SSTL I/O DDR1_DQS_DN[07] DE39 SSTL I/O DDR1_DQS_DN[08] DE15 SSTL I/O DDR1_DQS_DN[09] CR1 SSTL I/O DDR1_DQS_DN[10] DB8 SSTL I/O DDR1_DQS_DN[11] CT8 SSTL I/O DDR1_DQS_DN[12] CP14 SSTL I/O DDR1_DQS_DN[13] CR31 SSTL I/O DDR1_DQS_DN[14] DE33 SSTL I/O DDR1_DQS_DN[15] CT38 SSTL I/O DDR1_DQS_DN[16] CY38 SSTL I/O DDR1_DQS_DN[17] DB14 SSTL I/O DDR1_DQS_DP[00] CR3 SSTL I/O DDR1_DQS_DP[01] DE9 SSTL I/O DDR1_DQS_DP[02] CU9 SSTL I/O DDR1_DQS_DP[03] CU15 SSTL I/O DDR1_DQS_DP[04] CP32 SSTL I/O DDR1_DQS_DP[05] DB34 SSTL I/O DDR1_DQS_DP[06] CU39 SSTL I/O DDR1_DQS_DP[07] DC39 SSTL I/O DDR1_DQS_DP[08] DC15 SSTL I/O DDR1_DQS_DP[09] CT2 SSTL I/O DDR1_DQS_DP[10] DD8 SSTL I/O DDR1_DQS_DP[11] CP8 SSTL I/O Table 8-1. Land List by Land Name (Sheet 7 of 42) Land Name Land No. Buffer Type Direction DDR1_DQS_DP[12] CT14 SSTL I/O DDR1_DQS_DP[13] CU31 SSTL I/O DDR1_DQS_DP[14] DC33 SSTL I/O DDR1_DQS_DP[15] CP38 SSTL I/O DDR1_DQS_DP[16] DB38 SSTL I/O DDR1_DQS_DP[17] CY14 SSTL I/O DDR1_MA_PAR DE25 SSTL O DDR1_MA[00] DC23 SSTL O DDR1_MA[01] DE23 SSTL O DDR1_MA[02] DF24 SSTL O DDR1_MA[03] DA23 SSTL O DDR1_MA[04] DB22 SSTL O DDR1_MA[05] DF22 SSTL O DDR1_MA[06] DE21 SSTL O DDR1_MA[07] DF20 SSTL O DDR1_MA[08] DB20 SSTL O DDR1_MA[09] DA19 SSTL O DDR1_MA[10] DF26 SSTL O DDR1_MA[11] DE19 SSTL O DDR1_MA[12] DC19 SSTL O DDR1_MA[13] DB30 SSTL O DDR1_MA[14] DB18 SSTL O DDR1_MA[15] DC17 SSTL O DDR1_ODT[0] CT22 SSTL O DDR1_ODT[1] DA25 SSTL O DDR1_ODT[2] CY26 SSTL O DDR1_ODT[3] CV26 SSTL O DDR1_ODT[4] CU27 SSTL O DDR1_ODT[5] CY28 SSTL O DDR1_PAR_ERR_N CU21 SSTL I DDR1_RAS_N DB28 SSTL O DDR1_WE_N CV28 SSTL O DDR2_BA[0] R17 SSTL O DDR2_BA[1] L17 SSTL O DDR2_BA[2] P24 SSTL O DDR2_CAS_N T16 SSTL O DDR2_CKE[0] AA25 SSTL O DDR2_CKE[1] T26 SSTL O DDR2_CKE[2] U27 SSTL O DDR2_CKE[3] AD24 SSTL O DDR2_CKE[4] AE25 SSTL O DDR2_CKE[5] AE23 SSTL O DDR2_CLK_DN[0] Y24 SSTL O DDR2_CLK_DN[1] Y22 SSTL O Table 8-1. Land List by Land Name (Sheet 8 of 42) Land Name Land No. Buffer Type Direction 77 Datasheet Processor Land Listing DDR2_CLK_DN[2] W21 SSTL O DDR2_CLK_DN[3] W23 SSTL O DDR2_CLK_DP[0] AB24 SSTL O DDR2_CLK_DP[1] AB22 SSTL O DDR2_CLK_DP[2] AA21 SSTL O DDR2_CLK_DP[3] AA23 SSTL O DDR2_CS_N[0] AB20 SSTL O DDR2_CS_N[1] AE19 SSTL O DDR2_CS_N[2] AD16 SSTL O DDR2_CS_N[3] AA15 SSTL O DDR2_CS_N[4] AA19 SSTL O DDR2_CS_N[5] P18 SSTL O DDR2_CS_N[6] AB16 SSTL O DDR2_CS_N[7] Y16 SSTL O DDR2_CS_N[8] W17 SSTL O DDR2_CS_N[9] AA17 SSTL O DDR2_DQ[00] T40 SSTL I/O DDR2_DQ[01] V40 SSTL I/O DDR2_DQ[02] P36 SSTL I/O DDR2_DQ[03] T36 SSTL I/O DDR2_DQ[04] R41 SSTL I/O DDR2_DQ[05] U41 SSTL I/O DDR2_DQ[06] R37 SSTL I/O DDR2_DQ[07] U37 SSTL I/O DDR2_DQ[08] AE41 SSTL I/O DDR2_DQ[09] AD40 SSTL I/O DDR2_DQ[10] AA37 SSTL I/O DDR2_DQ[11] AC37 SSTL I/O DDR2_DQ[12] AC41 SSTL I/O DDR2_DQ[13] AA41 SSTL I/O DDR2_DQ[14] AF38 SSTL I/O DDR2_DQ[15] AE37 SSTL I/O DDR2_DQ[16] U33 SSTL I/O DDR2_DQ[17] R33 SSTL I/O DDR2_DQ[18] W29 SSTL I/O DDR2_DQ[19] U29 SSTL I/O DDR2_DQ[20] T34 SSTL I/O DDR2_DQ[21] P34 SSTL I/O DDR2_DQ[22] V30 SSTL I/O DDR2_DQ[23] T30 SSTL I/O DDR2_DQ[24] AC35 SSTL I/O DDR2_DQ[25] AE35 SSTL I/O DDR2_DQ[26] AE33 SSTL I/O DDR2_DQ[27] AF32 SSTL I/O Table 8-1. Land List by Land Name (Sheet 9 of 42) Land Name Land No. Buffer Type Direction DDR2_DQ[28] AA35 SSTL I/O DDR2_DQ[29] W35 SSTL I/O DDR2_DQ[30] AB32 SSTL I/O DDR2_DQ[31] AD32 SSTL I/O DDR2_DQ[32] AC13 SSTL I/O DDR2_DQ[33] AE13 SSTL I/O DDR2_DQ[34] AG11 SSTL I/O DDR2_DQ[35] AF10 SSTL I/O DDR2_DQ[36] AD14 SSTL I/O DDR2_DQ[37] AA13 SSTL I/O DDR2_DQ[38] AB10 SSTL I/O DDR2_DQ[39] AD10 SSTL I/O DDR2_DQ[40] V6 SSTL I/O DDR2_DQ[41] Y6 SSTL I/O DDR2_DQ[42] AF8 SSTL I/O DDR2_DQ[43] AG7 SSTL I/O DDR2_DQ[44] U7 SSTL I/O DDR2_DQ[45] W7 SSTL I/O DDR2_DQ[46] AD8 SSTL I/O DDR2_DQ[47] AE7 SSTL I/O DDR2_DQ[48] R13 SSTL I/O DDR2_DQ[49] U13 SSTL I/O DDR2_DQ[50] T10 SSTL I/O DDR2_DQ[51] V10 SSTL I/O DDR2_DQ[52] T14 SSTL I/O DDR2_DQ[53] V14 SSTL I/O DDR2_DQ[54] R9 SSTL I/O DDR2_DQ[55] U9 SSTL I/O DDR2_DQ[56] W3 SSTL I/O DDR2_DQ[57] Y4 SSTL I/O DDR2_DQ[58] AF4 SSTL I/O DDR2_DQ[59] AE5 SSTL I/O DDR2_DQ[60] U3 SSTL I/O DDR2_DQ[61] V4 SSTL I/O DDR2_DQ[62] AF2 SSTL I/O DDR2_DQ[63] AE3 SSTL I/O DDR2_DQS_DN[00] T38 SSTL I/O DDR2_DQS_DN[01] AD38 SSTL I/O DDR2_DQS_DN[02] W31 SSTL I/O DDR2_DQS_DN[03] AA33 SSTL I/O DDR2_DQS_DN[04] AC11 SSTL I/O DDR2_DQS_DN[05] AB8 SSTL I/O DDR2_DQS_DN[06] U11 SSTL I/O DDR2_DQS_DN[07] AC3 SSTL I/O Table 8-1. Land List by Land Name (Sheet 10 of 42) Land Name Land No. Buffer Type Direction Datasheet 78 Processor Land Listing DDR2_DQS_DN[08] AB28 SSTL I/O DDR2_DQS_DN[09] W39 SSTL I/O DDR2_DQS_DN[10] AC39 SSTL I/O DDR2_DQS_DN[11] T32 SSTL I/O DDR2_DQS_DN[12] AB34 SSTL I/O DDR2_DQS_DN[13] AD12 SSTL I/O DDR2_DQS_DN[14] AA7 SSTL I/O DDR2_DQS_DN[15] V12 SSTL I/O DDR2_DQS_DN[16] AD4 SSTL I/O DDR2_DQS_DN[17] AD28 SSTL I/O DDR2_DQS_DP[00] V38 SSTL I/O DDR2_DQS_DP[01] AB38 SSTL I/O DDR2_DQS_DP[02] U31 SSTL I/O DDR2_DQS_DP[03] AC33 SSTL I/O DDR2_DQS_DP[04] AE11 SSTL I/O DDR2_DQS_DP[05] AC7 SSTL I/O DDR2_DQS_DP[06] W11 SSTL I/O DDR2_DQS_DP[07] AB4 SSTL I/O DDR2_DQS_DP[08] AC27 SSTL I/O DDR2_DQS_DP[09] U39 SSTL I/O DDR2_DQS_DP[10] AB40 SSTL I/O DDR2_DQS_DP[11] V32 SSTL I/O DDR2_DQS_DP[12] Y34 SSTL I/O DDR2_DQS_DP[13] AB12 SSTL I/O DDR2_DQS_DP[14] Y8 SSTL I/O DDR2_DQS_DP[15] T12 SSTL I/O DDR2_DQS_DP[16] AC5 SSTL I/O DDR2_DQS_DP[17] AC29 SSTL I/O DDR2_MA_PAR M18 SSTL O DDR2_MA[00] AB18 SSTL O DDR2_MA[01] R19 SSTL O DDR2_MA[02] U19 SSTL O DDR2_MA[03] T20 SSTL O DDR2_MA[04] P20 SSTL O DDR2_MA[05] U21 SSTL O DDR2_MA[06] R21 SSTL O DDR2_MA[07] P22 SSTL O DDR2_MA[08] T22 SSTL O DDR2_MA[09] R23 SSTL O DDR2_MA[10] T18 SSTL O DDR2_MA[11] U23 SSTL O DDR2_MA[12] T24 SSTL O DDR2_MA[13] R15 SSTL O DDR2_MA[14] W25 SSTL O Table 8-1. Land List by Land Name (Sheet 11 of 42) Land Name Land No. Buffer Type Direction DDR2_MA[15] U25 SSTL O DDR2_ODT[0] Y20 SSTL O DDR2_ODT[1] W19 SSTL O DDR2_ODT[2] AD18 SSTL O DDR2_ODT[3] Y18 SSTL O DDR2_ODT[4] AD22 SSTL O DDR2_ODT[5] AE21 SSTL O DDR2_PAR_ERR_N AD20 SSTL I DDR2_RAS_N U17 SSTL O DDR2_WE_N P16 SSTL O DDR23_RCOMP[0] U15 Analog I DDR23_RCOMP[1] AC15 Analog I DDR23_RCOMP[2] Y14 Analog I DDR3_BA[0] A17 SSTL O DDR3_BA[1] E19 SSTL O DDR3_BA[2] B24 SSTL O DDR3_CAS_N B14 SSTL O DDR3_CKE[0] K24 SSTL O DDR3_CKE[1] M24 SSTL O DDR3_CKE[2] J25 SSTL O DDR3_CKE[3] N25 SSTL O DDR3_CKE[4] R25 SSTL O DDR3_CKE[5] R27 SSTL O DDR3_CLK_DN[0] J23 SSTL O DDR3_CLK_DN[1] J21 SSTL O DDR3_CLK_DN[2] M20 SSTL O DDR3_CLK_DN[3] K22 SSTL O DDR3_CLK_DP[0] L23 SSTL O DDR3_CLK_DP[1] L21 SSTL O DDR3_CLK_DP[2] K20 SSTL O DDR3_CLK_DP[3] M22 SSTL O DDR3_CS_N[0] G19 SSTL O DDR3_CS_N[1] J19 SSTL O DDR3_CS_N[2] F14 SSTL O DDR3_CS_N[3] G15 SSTL O DDR3_CS_N[4] K18 SSTL O DDR3_CS_N[5] G17 SSTL O DDR3_CS_N[6] F16 SSTL O DDR3_CS_N[7] E15 SSTL O DDR3_CS_N[8] D16 SSTL O DDR3_CS_N[9] K16 SSTL O DDR3_DQ[00] B40 SSTL I/O DDR3_DQ[01] A39 SSTL I/O DDR3_DQ[02] C37 SSTL I/O Table 8-1. Land List by Land Name (Sheet 12 of 42) Land Name Land No. Buffer Type Direction 79 Datasheet Processor Land Listing DDR3_DQ[03] E37 SSTL I/O DDR3_DQ[04] F40 SSTL I/O DDR3_DQ[05] D40 SSTL I/O DDR3_DQ[06] F38 SSTL I/O DDR3_DQ[07] A37 SSTL I/O DDR3_DQ[08] N39 SSTL I/O DDR3_DQ[09] L39 SSTL I/O DDR3_DQ[10] L35 SSTL I/O DDR3_DQ[11] J35 SSTL I/O DDR3_DQ[12] M40 SSTL I/O DDR3_DQ[13] K40 SSTL I/O DDR3_DQ[14] K36 SSTL I/O DDR3_DQ[15] H36 SSTL I/O DDR3_DQ[16] A35 SSTL I/O DDR3_DQ[17] F34 SSTL I/O DDR3_DQ[18] D32 SSTL I/O DDR3_DQ[19] F32 SSTL I/O DDR3_DQ[20] E35 SSTL I/O DDR3_DQ[21] C35 SSTL I/O DDR3_DQ[22] A33 SSTL I/O DDR3_DQ[23] B32 SSTL I/O DDR3_DQ[24] M32 SSTL I/O DDR3_DQ[25] L31 SSTL I/O DDR3_DQ[26] M28 SSTL I/O DDR3_DQ[27] L27 SSTL I/O DDR3_DQ[28] L33 SSTL I/O DDR3_DQ[29] K32 SSTL I/O DDR3_DQ[30] N27 SSTL I/O DDR3_DQ[31] M26 SSTL I/O DDR3_DQ[32] D12 SSTL I/O DDR3_DQ[33] A11 SSTL I/O DDR3_DQ[34] C9 SSTL I/O DDR3_DQ[35] E9 SSTL I/O DDR3_DQ[36] F12 SSTL I/O DDR3_DQ[37] B12 SSTL I/O DDR3_DQ[38] F10 SSTL I/O DDR3_DQ[39] A9 SSTL I/O DDR3_DQ[40] J13 SSTL I/O DDR3_DQ[41] L13 SSTL I/O DDR3_DQ[42] J9 SSTL I/O DDR3_DQ[43] L9 SSTL I/O DDR3_DQ[44] K14 SSTL I/O DDR3_DQ[45] M14 SSTL I/O DDR3_DQ[46] K10 SSTL I/O Table 8-1. Land List by Land Name (Sheet 13 of 42) Land Name Land No. Buffer Type Direction DDR3_DQ[47] M10 SSTL I/O DDR3_DQ[48] E7 SSTL I/O DDR3_DQ[49] F6 SSTL I/O DDR3_DQ[50] N7 SSTL I/O DDR3_DQ[51] P6 SSTL I/O DDR3_DQ[52] C7 SSTL I/O DDR3_DQ[53] D6 SSTL I/O DDR3_DQ[54] L7 SSTL I/O DDR3_DQ[55] M6 SSTL I/O DDR3_DQ[56] G3 SSTL I/O DDR3_DQ[57] H2 SSTL I/O DDR3_DQ[58] N3 SSTL I/O DDR3_DQ[59] P4 SSTL I/O DDR3_DQ[60] F4 SSTL I/O DDR3_DQ[61] H4 SSTL I/O DDR3_DQ[62] L1 SSTL I/O DDR3_DQ[63] M2 SSTL I/O DDR3_DQS_DN[00] B38 SSTL I/O DDR3_DQS_DN[01] L37 SSTL I/O DDR3_DQS_DN[02] G33 SSTL I/O DDR3_DQS_DN[03] P28 SSTL I/O DDR3_DQS_DN[04] B10 SSTL I/O DDR3_DQS_DN[05] L11 SSTL I/O DDR3_DQS_DN[06] J7 SSTL I/O DDR3_DQS_DN[07] L3 SSTL I/O DDR3_DQS_DN[08] G27 SSTL I/O DDR3_DQS_DN[09] G39 SSTL I/O DDR3_DQS_DN[10] K38 SSTL I/O DDR3_DQS_DN[11] B34 SSTL I/O DDR3_DQS_DN[12] M30 SSTL I/O DDR3_DQS_DN[13] G11 SSTL I/O DDR3_DQS_DN[14] M12 SSTL I/O DDR3_DQS_DN[15] H6 SSTL I/O DDR3_DQS_DN[16] K4 SSTL I/O DDR3_DQS_DN[17] H28 SSTL I/O DDR3_DQS_DP[00] D38 SSTL I/O DDR3_DQS_DP[01] J37 SSTL I/O DDR3_DQS_DP[02] E33 SSTL I/O DDR3_DQS_DP[03] N29 SSTL I/O DDR3_DQS_DP[04] D10 SSTL I/O DDR3_DQS_DP[05] N11 SSTL I/O DDR3_DQS_DP[06] K6 SSTL I/O DDR3_DQS_DP[07] M4 SSTL I/O DDR3_DQS_DP[08] E27 SSTL I/O Table 8-1. Land List by Land Name (Sheet 14 of 42) Land Name Land No. Buffer Type Direction Datasheet 80 Processor Land Listing DDR3_DQS_DP[09] E39 SSTL I/O DDR3_DQS_DP[10] M38 SSTL I/O DDR3_DQS_DP[11] D34 SSTL I/O DDR3_DQS_DP[12] N31 SSTL I/O DDR3_DQS_DP[13] E11 SSTL I/O DDR3_DQS_DP[14] K12 SSTL I/O DDR3_DQS_DP[15] G7 SSTL I/O DDR3_DQS_DP[16] J3 SSTL I/O DDR3_DQS_DP[17] F28 SSTL I/O DDR3_MA_PAR B18 SSTL O DDR3_MA[00] A19 SSTL O DDR3_MA[01] E21 SSTL O DDR3_MA[02] F20 SSTL O DDR3_MA[03] B20 SSTL O DDR3_MA[04] D20 SSTL O DDR3_MA[05] A21 SSTL O DDR3_MA[06] F22 SSTL O DDR3_MA[07] B22 SSTL O DDR3_MA[08] D22 SSTL O DDR3_MA[09] G23 SSTL O DDR3_MA[10] D18 SSTL O DDR3_MA[11] A23 SSTL O DDR3_MA[12] E23 SSTL O DDR3_MA[13] A13 SSTL O DDR3_MA[14] D24 SSTL O DDR3_MA[15] F24 SSTL O DDR3_ODT[0] L19 SSTL O DDR3_ODT[1] F18 SSTL O DDR3_ODT[2] E17 SSTL O DDR3_ODT[3] J17 SSTL O DDR3_ODT[4] D14 SSTL O DDR3_ODT[5] M16 SSTL O DDR3_PAR_ERR_N G21 SSTL I DDR3_RAS_N B16 SSTL O DDR3_WE_N A15 SSTL O DMI_RX_DN[0] E47 PCIEX I DMI_RX_DN[1] D48 PCIEX I DMI_RX_DN[2] E49 PCIEX I DMI_RX_DN[3] D50 PCIEX I DMI_RX_DP[0] C47 PCIEX I DMI_RX_DP[1] B48 PCIEX I DMI_RX_DP[2] C49 PCIEX I DMI_RX_DP[3] B50 PCIEX I DMI_TX_DN[0] D42 PCIEX O Table 8-1. Land List by Land Name (Sheet 15 of 42) Land Name Land No. Buffer Type Direction DMI_TX_DN[1] E43 PCIEX O DMI_TX_DN[2] D44 PCIEX O DMI_TX_DN[3] E45 PCIEX O DMI_TX_DP[0] B42 PCIEX O DMI_TX_DP[1] C43 PCIEX O DMI_TX_DP[2] B44 PCIEX O DMI_TX_DP[3] C45 PCIEX O TXT_PLTEN V52 CMOS I DRAM_PWR_OK_C0 1 CW17 CMOS1.5 v I DRAM_PWR_OK_C2 3 L15 CMOS1.5 v I EAR_N CH56 ODCMOS I/O ERROR_N[0] BD50 ODCMOS O ERROR_N[1] CB54 ODCMOS O ERROR_N[2] BC51 ODCMOS O IVT_ID_N AH42 O TXT_AGENT AK52 CMOS I MEM_HOT_C01_N CB22 ODCMOS I/O MEM_HOT_C23_N E13 ODCMOS I/O PE_RBIAS AH52 PCIEX3 I/O PE_RBIAS_SENSE AF52 PCIEX3 I PE_VREF_CAP AJ43 PCIEX3 I/O PE1A_RX_DN[0] E51 PCIEX3 I PE1A_RX_DN[1] F52 PCIEX3 I PE1A_RX_DN[2] F54 PCIEX3 I PE1A_RX_DN[3] G55 PCIEX3 I PE1A_RX_DP[0] C51 PCIEX3 I PE1A_RX_DP[1] D52 PCIEX3 I PE1A_RX_DP[2] D54 PCIEX3 I PE1A_RX_DP[3] E55 PCIEX3 I PE1A_TX_DN[0] K42 PCIEX3 O PE1A_TX_DN[1] L43 PCIEX3 O PE1A_TX_DN[2] K44 PCIEX3 O PE1A_TX_DN[3] L45 PCIEX3 O PE1A_TX_DP[0] H42 PCIEX3 O PE1A_TX_DP[1] J43 PCIEX3 O PE1A_TX_DP[2] H44 PCIEX3 O PE1A_TX_DP[3] J45 PCIEX3 O PE1B_RX_DN[4] L53 PCIEX3 I PE1B_RX_DN[5] M54 PCIEX3 I PE1B_RX_DN[6] L57 PCIEX3 I PE1B_RX_DN[7] M56 PCIEX3 I PE1B_RX_DP[4] J53 PCIEX3 I Table 8-1. Land List by Land Name (Sheet 16 of 42) Land Name Land No. Buffer Type Direction 81 Datasheet Processor Land Listing PE1B_RX_DP[5] K54 PCIEX3 I PE1B_RX_DP[6] J57 PCIEX3 I PE1B_RX_DP[7] K56 PCIEX3 I PE1B_TX_DN[4] K46 PCIEX3 O PE1B_TX_DN[5] L47 PCIEX3 O PE1B_TX_DN[6] K48 PCIEX3 O PE1B_TX_DN[7] L49 PCIEX3 O PE1B_TX_DP[4] H46 PCIEX3 O PE1B_TX_DP[5] J47 PCIEX3 O PE1B_TX_DP[6] H48 PCIEX3 O PE1B_TX_DP[7] J49 PCIEX3 O PE2A_RX_DN[0] N55 PCIEX3 I PE2A_RX_DN[1] V54 PCIEX3 I PE2A_RX_DN[2] V56 PCIEX3 I PE2A_RX_DN[3] W55 PCIEX3 I PE2A_RX_DP[0] L55 PCIEX3 I PE2A_RX_DP[1] T54 PCIEX3 I PE2A_RX_DP[2] T56 PCIEX3 I PE2A_RX_DP[3] U55 PCIEX3 I PE2A_TX_DN[0] AR49 PCIEX3 O PE2A_TX_DN[1] AP50 PCIEX3 O PE2A_TX_DN[2] AR51 PCIEX3 O PE2A_TX_DN[3] AP52 PCIEX3 O PE2A_TX_DP[0] AN49 PCIEX3 O PE2A_TX_DP[1] AM50 PCIEX3 O PE2A_TX_DP[2] AN51 PCIEX3 O PE2A_TX_DP[3] AM52 PCIEX3 O PE2B_RX_DN[4] AD54 PCIEX3 I PE2B_RX_DN[5] AD56 PCIEX3 I PE2B_RX_DN[6] AE55 PCIEX3 I PE2B_RX_DN[7] AF58 PCIEX3 I PE2B_RX_DP[4] AB54 PCIEX3 I PE2B_RX_DP[5] AB56 PCIEX3 I PE2B_RX_DP[6] AC55 PCIEX3 I PE2B_RX_DP[7] AE57 PCIEX3 I PE2B_TX_DN[4] AJ53 PCIEX3 O PE2B_TX_DN[5] AK54 PCIEX3 O PE2B_TX_DN[6] AR53 PCIEX3 O PE2B_TX_DN[7] AT54 PCIEX3 O PE2B_TX_DP[4] AG53 PCIEX3 O PE2B_TX_DP[5] AH54 PCIEX3 O PE2B_TX_DP[6] AN53 PCIEX3 O PE2B_TX_DP[7] AP54 PCIEX3 O PE2C_RX_DN[10] AL57 PCIEX3 I Table 8-1. Land List by Land Name (Sheet 17 of 42) Land Name Land No. Buffer Type Direction PE2C_RX_DN[11] AU57 PCIEX3 I PE2C_RX_DN[8] AK56 PCIEX3 I PE2C_RX_DN[9] AM58 PCIEX3 I PE2C_RX_DP[10] AJ57 PCIEX3 I PE2C_RX_DP[11] AR57 PCIEX3 I PE2C_RX_DP[8] AH56 PCIEX3 I PE2C_RX_DP[9] AK58 PCIEX3 I PE2C_TX_DN[10] BB54 PCIEX3 O PE2C_TX_DN[11] BA51 PCIEX3 O PE2C_TX_DN[8] AY52 PCIEX3 O PE2C_TX_DN[9] BA53 PCIEX3 O PE2C_TX_DP[10] AY54 PCIEX3 O PE2C_TX_DP[11] AW51 PCIEX3 O PE2C_TX_DP[8] AV52 PCIEX3 O PE2C_TX_DP[9] AW53 PCIEX3 O PE2D_RX_DN[12] AV58 PCIEX3 I PE2D_RX_DN[13] AT56 PCIEX3 I PE2D_RX_DN[14] BA57 PCIEX3 I PE2D_RX_DN[15] BB56 PCIEX3 I PE2D_RX_DP[12] AT58 PCIEX3 I PE2D_RX_DP[13] AP56 PCIEX3 I PE2D_RX_DP[14] AY58 PCIEX3 I PE2D_RX_DP[15] AY56 PCIEX3 I PE2D_TX_DN[12] AY50 PCIEX3 O PE2D_TX_DN[13] BA49 PCIEX3 O PE2D_TX_DN[14] AY48 PCIEX3 O PE2D_TX_DN[15] BA47 PCIEX3 O PE2D_TX_DP[12] AV50 PCIEX3 O PE2D_TX_DP[13] AW49 PCIEX3 O PE2D_TX_DP[14] AV48 PCIEX3 O PE2D_TX_DP[15] AW47 PCIEX3 O PE3A_RX_DN[0] AH44 PCIEX3 I PE3A_RX_DN[1] AJ45 PCIEX3 I PE3A_RX_DN[2] AH46 PCIEX3 I PE3A_RX_DN[3] AC49 PCIEX3 I PE3A_RX_DP[0] AF44 PCIEX3 I PE3A_RX_DP[1] AG45 PCIEX3 I PE3A_RX_DP[2] AF46 PCIEX3 I PE3A_RX_DP[3] AA49 PCIEX3 I PE3A_TX_DN[0] K50 PCIEX3 O PE3A_TX_DN[1] L51 PCIEX3 O PE3A_TX_DN[2] U47 PCIEX3 O PE3A_TX_DN[3] T48 PCIEX3 O PE3A_TX_DP[0] H50 PCIEX3 O Table 8-1. Land List by Land Name (Sheet 18 of 42) Land Name Land No. Buffer Type Direction Datasheet 82 Processor Land Listing PE3A_TX_DP[1] J51 PCIEX3 O PE3A_TX_DP[2] R47 PCIEX3 O PE3A_TX_DP[3] P48 PCIEX3 O PE3B_RX_DN[4] AB50 PCIEX3 I PE3B_RX_DN[5] AB52 PCIEX3 I PE3B_RX_DN[6] AC53 PCIEX3 I PE3B_RX_DN[7] AC51 PCIEX3 I PE3B_RX_DP[4] Y50 PCIEX3 I PE3B_RX_DP[5] Y52 PCIEX3 I PE3B_RX_DP[6] AA53 PCIEX3 I PE3B_RX_DP[7] AA51 PCIEX3 I PE3B_TX_DN[4] T52 PCIEX3 O PE3B_TX_DN[5] U51 PCIEX3 O PE3B_TX_DN[6] T50 PCIEX3 O PE3B_TX_DN[7] U49 PCIEX3 O PE3B_TX_DP[4] P52 PCIEX3 O PE3B_TX_DP[5] R51 PCIEX3 O PE3B_TX_DP[6] P50 PCIEX3 O PE3B_TX_DP[7] R49 PCIEX3 O PE3C_RX_DN[10] AH50 PCIEX3 I PE3C_RX_DN[11] AJ49 PCIEX3 I PE3C_RX_DN[8] AH48 PCIEX3 I PE3C_RX_DN[9] AJ51 PCIEX3 I PE3C_RX_DP[10] AF50 PCIEX3 I PE3C_RX_DP[11] AG49 PCIEX3 I PE3C_RX_DP[8] AF48 PCIEX3 I PE3C_RX_DP[9] AG51 PCIEX3 I PE3C_TX_DN[10] U45 PCIEX3 O PE3C_TX_DN[11] AB46 PCIEX3 O PE3C_TX_DN[8] T46 PCIEX3 O PE3C_TX_DN[9] AC47 PCIEX3 O PE3C_TX_DP[10] R45 PCIEX3 O PE3C_TX_DP[11] Y46 PCIEX3 O PE3C_TX_DP[8] P46 PCIEX3 O PE3C_TX_DP[9] AA47 PCIEX3 O PE3D_RX_DN[12] AJ47 PCIEX3 I PE3D_RX_DN[13] AR47 PCIEX3 I PE3D_RX_DN[14] AP46 PCIEX3 I PE3D_RX_DN[15] AR45 PCIEX3 I PE3D_RX_DP[12] AG47 PCIEX3 I PE3D_RX_DP[13] AN47 PCIEX3 I PE3D_RX_DP[14] AM46 PCIEX3 I PE3D_RX_DP[15] AN45 PCIEX3 I PE3D_TX_DN[12] AC45 PCIEX3 O Table 8-1. Land List by Land Name (Sheet 19 of 42) Land Name Land No. Buffer Type Direction PE3D_TX_DN[13] AB44 PCIEX3 O PE3D_TX_DN[14] AA43 PCIEX3 O PE3D_TX_DN[15] P44 PCIEX3 O PE3D_TX_DP[12] AA45 PCIEX3 O PE3D_TX_DP[13] Y44 PCIEX3 O PE3D_TX_DP[14] AC43 PCIEX3 O PE3D_TX_DP[15] T44 PCIEX3 O PECI BJ47 PECI I/O PEHPSCL BH48 ODCMOS I/O PEHPSDA BF48 ODCMOS I/O PMSYNC K52 CMOS I PRDY_N R53 CMOS O PREQ_N U53 CMOS I/O PROCHOT_N BD52 ODCMOS I/O PWRGOOD BJ53 CMOS I RESET_N CK44 CMOS I RSVD A53 RSVD AB48 RSVD AJ55 RSVD AL55 RSVD AM44 RSVD AP48 RSVD AR55 RSVD AU55 RSVD AV46 RSVD AY46 RSVD B46 RSVD BC47 RSVD BD44 RSVD BD46 RSVD BD48 RSVD BE43 RSVD BE45 RSVD BE47 RSVD BF46 RSVD BG43 RSVD BG45 RSVD BH44 RSVD BH46 RSVD BJ43 RSVD BJ45 RSVD BK44 RSVD BL43 RSVD BL45 Table 8-1. Land List by Land Name (Sheet 20 of 42) Land Name Land No. Buffer Type Direction 83 Datasheet Processor Land Listing RSVD BM44 RSVD BM46 RSVD BN47 RSVD BP44 RSVD BP46 RSVD BR43 RSVD BR47 RSVD BT44 RSVD BU43 RSVD BY46 RSVD C53 RSVD CA45 RSVD CD44 RSVD CE43 RSVD CF44 RSVD CG11 RSVD CP54 RSVD CY46 RSVD CY48 RSVD CY56 RSVD CY58 RSVD D46 RSVD D56 RSVD DA57 RSVD DB56 RSVD DC55 RSVD DD54 RSVD DE55 RSVD E53 RSVD E57 RSVD F46 RSVD F56 RSVD F58 RSVD H56 RSVD H58 RSVD J15 RSVD K58 RSVD M48 RSVD W15 RSVD Y48 SAFE_MODE_BOOT DA55 CMOS I SKTOCC_N BU49 O SVIDALERT_N CR43 CMOS I SVIDCLK CB44 ODCMOS O Table 8-1. Land List by Land Name (Sheet 21 of 42) Land Name Land No. Buffer Type Direction SVIDDATA BR45 ODCMOS I/O TCK BY44 CMOS I TDI BW43 CMOS I TDO CA43 ODCMOS O TEST0 DB4 O TEST1 CW1 O TEST2 F2 O TEST3 D4 O TEST4 BA55 I THERMTRIP_N BL47 ODCMOS O TMS BV44 CMOS I TRST_N CT54 CMOS I VCC AG19 PWR VCC AG25 PWR VCC AG27 PWR VCC AG29 PWR VCC AG31 PWR VCC AG33 PWR VCC AG35 PWR VCC AG37 PWR VCC AG39 PWR VCC AG41 PWR VCC AL1 PWR VCC AL11 PWR VCC AL13 PWR VCC AL15 PWR VCC AL17 PWR VCC AL3 PWR VCC AL5 PWR VCC AL7 PWR VCC AL9 PWR VCC AM10 PWR VCC AM12 PWR VCC AM14 PWR VCC AM16 PWR VCC AM2 PWR VCC AM4 PWR VCC AM6 PWR VCC AM8 PWR VCC AN1 PWR VCC AN11 PWR VCC AN13 PWR VCC AN15 PWR VCC AN17 PWR Table 8-1. Land List by Land Name (Sheet 22 of 42) Land Name Land No. Buffer Type Direction Datasheet 84 Processor Land Listing VCC AN3 PWR VCC AN5 PWR VCC AN7 PWR VCC AN9 PWR VCC AP10 PWR VCC AP12 PWR VCC AP14 PWR VCC AP16 PWR VCC AP2 PWR VCC AP4 PWR VCC AP6 PWR VCC AP8 PWR VCC AU1 PWR VCC AU11 PWR VCC AU13 PWR VCC AU15 PWR VCC AU17 PWR VCC AU3 PWR VCC AU5 PWR VCC AU7 PWR VCC AU9 PWR VCC AV10 PWR VCC AV12 PWR VCC AV14 PWR VCC AV16 PWR VCC AV2 PWR VCC AV4 PWR VCC AV6 PWR VCC AV8 PWR VCC AW1 PWR VCC AW11 PWR VCC AW13 PWR VCC AW15 PWR VCC AW17 PWR VCC AW3 PWR VCC AW5 PWR VCC AW7 PWR VCC AW9 PWR VCC AY10 PWR VCC AY12 PWR VCC AY14 PWR VCC AY16 PWR VCC AY2 PWR VCC AY4 PWR Table 8-1. Land List by Land Name (Sheet 23 of 42) Land Name Land No. Buffer Type Direction VCC AY6 PWR VCC AY8 PWR VCC BA1 PWR VCC BA11 PWR VCC BA13 PWR VCC BA15 PWR VCC BA17 PWR VCC BA3 PWR VCC BA5 PWR VCC BA7 PWR VCC BA9 PWR VCC BB10 PWR VCC BB12 PWR VCC BB14 PWR VCC BB16 PWR VCC BB2 PWR VCC BB4 PWR VCC BB6 PWR VCC BB8 PWR VCC BE1 PWR VCC BE11 PWR VCC BE13 PWR VCC BE15 PWR VCC BE17 PWR VCC BE3 PWR VCC BE5 PWR VCC BE7 PWR VCC BE9 PWR VCC BF10 PWR VCC BF12 PWR VCC BF14 PWR VCC BF16 PWR VCC BF2 PWR VCC BF4 PWR VCC BF6 PWR VCC BF8 PWR VCC BG1 PWR VCC BG11 PWR VCC BG13 PWR VCC BG15 PWR VCC BG17 PWR VCC BG3 PWR VCC BG5 PWR VCC BG7 PWR Table 8-1. Land List by Land Name (Sheet 24 of 42) Land Name Land No. Buffer Type Direction 85 Datasheet Processor Land Listing VCC BG9 PWR VCC BH10 PWR VCC BH12 PWR VCC BH14 PWR VCC BH16 PWR VCC BH2 PWR VCC BH4 PWR VCC BH6 PWR VCC BH8 PWR VCC BJ1 PWR VCC BJ11 PWR VCC BJ13 PWR VCC BJ15 PWR VCC BJ17 PWR VCC BJ3 PWR VCC BJ5 PWR VCC BJ7 PWR VCC BJ9 PWR VCC BK10 PWR VCC BK12 PWR VCC BK14 PWR VCC BK16 PWR VCC BK2 PWR VCC BK4 PWR VCC BK6 PWR VCC BK8 PWR VCC BN1 PWR VCC BN11 PWR VCC BN13 PWR VCC BN15 PWR VCC BN17 PWR VCC BN3 PWR VCC BN5 PWR VCC BN7 PWR VCC BN9 PWR VCC BP10 PWR VCC BP12 PWR VCC BP14 PWR VCC BP16 PWR VCC BP2 PWR VCC BP4 PWR VCC BP6 PWR VCC BP8 PWR VCC BR1 PWR Table 8-1. Land List by Land Name (Sheet 25 of 42) Land Name Land No. Buffer Type Direction VCC BR11 PWR VCC BR13 PWR VCC BR15 PWR VCC BR17 PWR VCC BR3 PWR VCC BR5 PWR VCC BR7 PWR VCC BR9 PWR VCC BT10 PWR VCC BT12 PWR VCC BT14 PWR VCC BT16 PWR VCC BT2 PWR VCC BT4 PWR VCC BT6 PWR VCC BT8 PWR VCC BU1 PWR VCC BU11 PWR VCC BU13 PWR VCC BU15 PWR VCC BU17 PWR VCC BU3 PWR VCC BU5 PWR VCC BU7 PWR VCC BU9 PWR VCC BV10 PWR VCC BV12 PWR VCC BV14 PWR VCC BV16 PWR VCC BV2 PWR VCC BV4 PWR VCC BV6 PWR VCC BV8 PWR VCC BY18 PWR VCC BY26 PWR VCC BY28 PWR VCC BY30 PWR VCC BY32 PWR VCC BY34 PWR VCC BY36 PWR VCC BY38 PWR VCC BY40 PWR VCC CA25 PWR VCC CA29 PWR Table 8-1. Land List by Land Name (Sheet 26 of 42) Land Name Land No. Buffer Type Direction Datasheet 86 Processor Land Listing VCC_SENSE BW3 O VCCD_01 CD20 PWR VCCD_01 CD22 PWR VCCD_01 CD24 PWR VCCD_01 CD26 PWR VCCD_01 CD28 PWR VCCD_01 CJ19 PWR VCCD_01 CJ21 PWR VCCD_01 CJ23 PWR VCCD_01 CJ25 PWR VCCD_01 CJ27 PWR VCCD_01 CP20 PWR VCCD_01 CP22 PWR VCCD_01 CP24 PWR VCCD_01 CP26 PWR VCCD_01 CP28 PWR VCCD_01 CW19 PWR VCCD_01 CW21 PWR VCCD_01 CW23 PWR VCCD_01 CW25 PWR VCCD_01 CW27 PWR VCCD_01 DD18 PWR VCCD_01 DD20 PWR VCCD_01 DD22 PWR VCCD_01 DD24 PWR VCCD_01 DD26 PWR VCCD_23 AC17 PWR VCCD_23 AC19 PWR VCCD_23 AC21 PWR VCCD_23 AC23 PWR VCCD_23 AC25 PWR VCCD_23 C15 PWR VCCD_23 C17 PWR VCCD_23 C19 PWR VCCD_23 C21 PWR VCCD_23 C23 PWR VCCD_23 G13 PWR VCCD_23 H16 PWR VCCD_23 H18 PWR VCCD_23 H20 PWR VCCD_23 H22 PWR VCCD_23 H24 PWR VCCD_23 N15 PWR VCCD_23 N17 PWR Table 8-1. Land List by Land Name (Sheet 27 of 42) Land Name Land No. Buffer Type Direction VCCD_23 N19 PWR VCCD_23 N21 PWR VCCD_23 N23 PWR VCCD_23 V16 PWR VCCD_23 V18 PWR VCCD_23 V20 PWR VCCD_23 V22 PWR VCCD_23 V24 PWR VCCPLL BY14 PWR VCCPLL CA13 PWR VCCPLL CA15 PWR VSA AE15 PWR VSA AE17 PWR VSA AF18 PWR VSA AG15 PWR VSA AG17 PWR VSA AH10 PWR VSA AH12 PWR VSA AH14 PWR VSA AH16 PWR VSA AH2 PWR VSA AH4 PWR VSA AH6 PWR VSA AH8 PWR VSA AJ1 PWR VSA AJ11 PWR VSA AJ13 PWR VSA AJ3 PWR VSA AJ5 PWR VSA AJ7 PWR VSA AJ9 PWR VSA B54 PWR VSA G43 PWR VSA G49 PWR VSA N45 PWR VSA N51 PWR VSA_SENSE AG13 O VSS A41 GND VSS A43 GND VSS A45 GND VSS A47 GND VSS A49 GND VSS A5 GND VSS A51 GND Table 8-1. Land List by Land Name (Sheet 28 of 42) Land Name Land No. Buffer Type Direction 87 Datasheet Processor Land Listing VSS A7 GND VSS AA11 GND VSS AA29 GND VSS AA3 GND VSS AA31 GND VSS AA39 GND VSS AA5 GND VSS AA55 GND VSS AA9 GND VSS AB14 GND VSS AB36 GND VSS AB42 GND VSS AB6 GND VSS AC31 GND VSS AC9 GND VSS AD26 GND VSS AD34 GND VSS AD36 GND VSS AD42 GND VSS AD44 GND VSS AD46 GND VSS AD48 GND VSS AD50 GND VSS AD52 GND VSS AD6 GND VSS AE29 GND VSS AE31 GND VSS AE39 GND VSS AE43 GND VSS AE47 GND VSS AE49 GND VSS AE51 GND VSS AE9 GND VSS AF12 GND VSS AF16 GND VSS AF20 GND VSS AF26 GND VSS AF34 GND VSS AF36 GND VSS AF40 GND VSS AF42 GND VSS AF54 GND VSS AF56 GND VSS AF6 GND Table 8-1. Land List by Land Name (Sheet 29 of 42) Land Name Land No. Buffer Type Direction VSS AG1 GND VSS AG3 GND VSS AG43 GND VSS AG5 GND VSS AG55 GND VSS AG57 GND VSS AG9 GND VSS AH58 GND VSS AJ15 GND VSS AJ17 GND VSS AK10 GND VSS AK12 GND VSS AK14 GND VSS AK16 GND VSS AK2 GND VSS AK4 GND VSS AK42 GND VSS AK44 GND VSS AK46 GND VSS AK48 GND VSS AK50 GND VSS AK6 GND VSS AK8 GND VSS AL43 GND VSS AL45 GND VSS AL49 GND VSS AL51 GND VSS AL53 GND VSS AM56 GND VSS AN55 GND VSS AN57 GND VSS AP42 GND VSS AP44 GND VSS AP58 GND VSS AR1 GND VSS AR11 GND VSS AR13 GND VSS AR15 GND VSS AR17 GND VSS AR3 GND VSS AR5 GND VSS AR7 GND VSS AR9 GND VSS AT10 GND Table 8-1. Land List by Land Name (Sheet 30 of 42) Land Name Land No. Buffer Type Direction Datasheet 88 Processor Land Listing VSS AT12 GND VSS AT14 GND VSS AT16 GND VSS AT2 GND VSS AT4 GND VSS AT46 GND VSS AT52 GND VSS AT6 GND VSS AT8 GND VSS AU45 GND VSS AU47 GND VSS AU49 GND VSS AU51 GND VSS AV42 GND VSS AV54 GND VSS AV56 GND VSS AW55 GND VSS AW57 GND VSS B36 GND VSS B52 GND VSS B6 GND VSS B8 GND VSS BB42 GND VSS BB46 GND VSS BB48 GND VSS BB50 GND VSS BB52 GND VSS BB58 GND VSS BC1 GND VSS BC11 GND VSS BC13 GND VSS BC15 GND VSS BC17 GND VSS BC3 GND VSS BC43 GND VSS BC45 GND VSS BC5 GND VSS BC53 GND VSS BC55 GND VSS BC57 GND VSS BC7 GND VSS BC9 GND VSS BD10 GND VSS BD12 GND Table 8-1. Land List by Land Name (Sheet 31 of 42) Land Name Land No. Buffer Type Direction VSS BD14 GND VSS BD16 GND VSS BD2 GND VSS BD4 GND VSS BD54 GND VSS BD56 GND VSS BD6 GND VSS BD8 GND VSS BE49 GND VSS BE51 GND VSS BF42 GND VSS BF44 GND VSS BG47 GND VSS BH58 GND VSS BJ55 GND VSS BJ57 GND VSS BK42 GND VSS BK46 GND VSS BK48 GND VSS BK50 GND VSS BK52 GND VSS BK54 GND VSS BL1 GND VSS BL11 GND VSS BL13 GND VSS BL15 GND VSS BL17 GND VSS BL3 GND VSS BL49 GND VSS BL5 GND VSS BL7 GND VSS BL9 GND VSS BM10 GND VSS BM12 GND VSS BM14 GND VSS BM16 GND VSS BM2 GND VSS BM4 GND VSS BM6 GND VSS BM8 GND VSS BN43 GND VSS BN45 GND VSS BP58 GND VSS BR53 GND Table 8-1. Land List by Land Name (Sheet 32 of 42) Land Name Land No. Buffer Type Direction 89 Datasheet Processor Land Listing VSS BR57 GND VSS BT46 GND VSS BT48 GND VSS BT50 GND VSS BT52 GND VSS BT54 GND VSS BT56 GND VSS BU45 GND VSS BU51 GND VSS BW1 GND VSS BW11 GND VSS BW13 GND VSS BW15 GND VSS BW17 GND VSS BW5 GND VSS BW7 GND VSS BY24 GND VSS BY4 GND VSS BY42 GND VSS BY58 GND VSS BY8 GND VSS C11 GND VSS C13 GND VSS C3 GND VSS C33 GND VSS C39 GND VSS C41 GND VSS C5 GND VSS C55 GND VSS CA11 GND VSS CA19 GND VSS CA27 GND VSS CA31 GND VSS CA33 GND VSS CA35 GND VSS CA37 GND VSS CA39 GND VSS CA41 GND VSS CA5 GND VSS CA55 GND VSS CA57 GND VSS CB16 GND VSS CB36 GND VSS CB46 GND Table 8-1. Land List by Land Name (Sheet 33 of 42) Land Name Land No. Buffer Type Direction VSS CB48 GND VSS CB50 GND VSS CB52 GND VSS CB56 GND VSS CB6 GND VSS CB8 GND VSS CC13 GND VSS CC29 GND VSS CC3 GND VSS CC43 GND VSS CC47 GND VSS CC49 GND VSS CC9 GND VSS CD18 GND VSS CD36 GND VSS CD6 GND VSS CE13 GND VSS CE5 GND VSS CE9 GND VSS CF12 GND VSS CF14 GND VSS CF30 GND VSS CF32 GND VSS CF34 GND VSS CF36 GND VSS CF38 GND VSS CF40 GND VSS CF42 GND VSS CF6 GND VSS CG15 GND VSS CG31 GND VSS CG33 GND VSS CG35 GND VSS CG37 GND VSS CG39 GND VSS CG41 GND VSS CG43 GND VSS CG53 GND VSS CG9 GND VSS CH12 GND VSS CH16 GND VSS CH36 GND VSS CH44 GND VSS CH46 GND Table 8-1. Land List by Land Name (Sheet 34 of 42) Land Name Land No. Buffer Type Direction Datasheet 90 Processor Land Listing VSS CH48 GND VSS CH50 GND VSS CH52 GND VSS CH54 GND VSS CH6 GND VSS CJ11 GND VSS CJ17 GND VSS CJ29 GND VSS CJ3 GND VSS CJ43 GND VSS CJ45 GND VSS CJ47 GND VSS CJ51 GND VSS CJ9 GND VSS CK10 GND VSS CK36 GND VSS CK4 GND VSS CK6 GND VSS CL17 GND VSS CL43 GND VSS CL5 GND VSS CM10 GND VSS CM14 GND VSS CM30 GND VSS CM32 GND VSS CM34 GND VSS CM36 GND VSS CM38 GND VSS CM40 GND VSS CM42 GND VSS CM6 GND VSS CM8 GND VSS CN11 GND VSS CN13 GND VSS CN15 GND VSS CN17 GND VSS CN3 GND VSS CN31 GND VSS CN33 GND VSS CN35 GND VSS CN37 GND VSS CN39 GND VSS CN5 GND VSS CN53 GND Table 8-1. Land List by Land Name (Sheet 35 of 42) Land Name Land No. Buffer Type Direction VSS CN55 GND VSS CN57 GND VSS CN7 GND VSS CN9 GND VSS CP12 GND VSS CP16 GND VSS CP36 GND VSS CP40 GND VSS CP42 GND VSS CP44 GND VSS CP46 GND VSS CP48 GND VSS CP50 GND VSS CP52 GND VSS CP56 GND VSS CR11 GND VSS CR35 GND VSS CR47 GND VSS CR49 GND VSS CR5 GND VSS CR9 GND VSS CT28 GND VSS CT42 GND VSS CU1 GND VSS CU11 GND VSS CU3 GND VSS CU35 GND VSS CU5 GND VSS CV14 GND VSS CV18 GND VSS CV30 GND VSS CV32 GND VSS CV34 GND VSS CV38 GND VSS CV42 GND VSS CV54 GND VSS CV58 GND VSS CV6 GND VSS CW11 GND VSS CW13 GND VSS CW15 GND VSS CW29 GND VSS CW31 GND VSS CW33 GND Table 8-1. Land List by Land Name (Sheet 36 of 42) Land Name Land No. Buffer Type Direction 91 Datasheet Processor Land Listing VSS CW35 GND VSS CW37 GND VSS CW39 GND VSS CW5 GND VSS CW51 GND VSS CW53 GND VSS CW55 GND VSS CW57 GND VSS CW7 GND VSS CY10 GND VSS CY12 GND VSS CY16 GND VSS CY2 GND VSS CY36 GND VSS CY40 GND VSS CY44 GND VSS CY50 GND VSS CY8 GND VSS D2 GND VSS D26 GND VSS D36 GND VSS D8 GND VSS DA11 GND VSS DA3 GND VSS DA41 GND VSS DA43 GND VSS DA45 GND VSS DA47 GND VSS DA5 GND VSS DA51 GND VSS DA9 GND VSS DB12 GND VSS DB2 GND VSS DB32 GND VSS DB36 GND VSS DB58 GND VSS DC3 GND VSS DC41 GND VSS DC5 GND VSS DD10 GND VSS DD12 GND VSS DD14 GND VSS DD34 GND VSS DD36 GND Table 8-1. Land List by Land Name (Sheet 37 of 42) Land Name Land No. Buffer Type Direction VSS DD38 GND VSS DD6 GND VSS DE17 GND VSS DE41 GND VSS DE53 GND VSS DE7 GND VSS DF12 GND VSS DF36 GND VSS DF42 GND VSS DF44 GND VSS DF46 GND VSS DF48 GND VSS DF50 GND VSS DF52 GND VSS DF8 GND VSS E1 GND VSS E29 GND VSS E3 GND VSS E31 GND VSS E41 GND VSS E5 GND VSS F36 GND VSS F42 GND VSS F44 GND VSS F48 GND VSS F50 GND VSS F8 GND VSS G1 GND VSS G25 GND VSS G31 GND VSS G35 GND VSS G37 GND VSS G41 GND VSS G45 GND VSS G47 GND VSS G5 GND VSS G51 GND VSS G53 GND VSS G57 GND VSS G9 GND VSS H10 GND VSS H12 GND VSS H14 GND VSS H32 GND Table 8-1. Land List by Land Name (Sheet 38 of 42) Land Name Land No. Buffer Type Direction Datasheet 92 Processor Land Listing VSS H34 GND VSS H38 GND VSS H40 GND VSS H52 GND VSS H54 GND VSS H8 GND VSS J11 GND VSS J27 GND VSS J31 GND VSS J33 GND VSS J39 GND VSS J41 GND VSS J5 GND VSS J55 GND VSS K2 GND VSS K26 GND VSS K28 GND VSS K30 GND VSS K34 GND VSS K8 GND VSS L25 GND VSS L29 GND VSS L41 GND VSS L5 GND VSS M34 GND VSS M36 GND VSS M42 GND VSS M44 GND VSS M46 GND VSS M50 GND VSS M52 GND VSS M8 GND VSS N13 GND VSS N33 GND VSS N35 GND VSS N37 GND VSS N41 GND VSS N43 GND VSS N47 GND VSS N49 GND VSS N5 GND VSS N53 GND VSS N9 GND VSS P10 GND Table 8-1. Land List by Land Name (Sheet 39 of 42) Land Name Land No. Buffer Type Direction VSS P12 GND VSS P14 GND VSS P26 GND VSS P30 GND VSS P32 GND VSS P38 GND VSS P40 GND VSS P54 GND VSS P56 GND VSS P8 GND VSS R11 GND VSS R29 GND VSS R3 GND VSS R31 GND VSS R35 GND VSS R39 GND VSS R5 GND VSS R55 GND VSS R7 GND VSS T28 GND VSS T4 GND VSS T42 GND VSS T6 GND VSS T8 GND VSS U35 GND VSS U5 GND VSS V26 GND VSS V28 GND VSS V34 GND VSS V36 GND VSS V42 GND VSS V44 GND VSS V46 GND VSS V48 GND VSS V50 GND VSS V8 GND VSS W13 GND VSS W33 GND VSS W37 GND VSS W41 GND VSS W43 GND VSS W45 GND VSS W47 GND VSS W5 GND Table 8-1. Land List by Land Name (Sheet 40 of 42) Land Name Land No. Buffer Type Direction 93 Datasheet Processor Land Listing VSS W51 GND VSS W53 GND VSS W9 GND VSS Y10 GND VSS Y12 GND VSS Y28 GND VSS Y30 GND VSS Y32 GND VSS Y36 GND VSS Y38 GND VSS Y40 GND VSS Y42 GND VSS Y56 GND VSS_VCC_SENSE BY2 O VSS_VSA_SENSE AF14 O VSS_VTTD_SENSE BT42 O VTTA AE45 PWR VTTA AE53 PWR VTTA AM48 PWR VTTA AM54 PWR VTTA AU53 PWR VTTA CA53 PWR VTTA CC45 PWR VTTA CG55 PWR VTTA CJ49 PWR VTTA CR45 PWR VTTA CR51 PWR VTTA DA49 PWR VTTA W49 PWR VTTA Y54 PWR VTTD AF22 PWR VTTD AF24 PWR VTTD AG21 PWR VTTD AG23 PWR VTTD AM42 PWR VTTD AT42 PWR VTTD AY42 PWR VTTD BD42 PWR VTTD BH42 PWR VTTD BK56 PWR VTTD BL51 PWR VTTD BM42 PWR VTTD BR55 PWR VTTD BU47 PWR Table 8-1. Land List by Land Name (Sheet 41 of 42) Land Name Land No. Buffer Type Direction VTTD BV42 PWR VTTD BY20 PWR VTTD BY22 PWR VTTD CA21 PWR VTTD CA23 PWR VTTD_SENSE BP42 O Table 8-1. Land List by Land Name (Sheet 42 of 42) Land Name Land No. Buffer Type Direction Datasheet 94 Processor Land Listing Table 8-2. Land List by Land Number (Sheet 1 of 42) Land No. Land Name Buffer Type Direction A11 DDR3_DQ[33] SSTL I/O A13 DDR3_MA[13] SSTL O A15 DDR3_WE_N SSTL O A17 DDR3_BA[0] SSTL O A19 DDR3_MA[00] SSTL O A21 DDR3_MA[05] SSTL O A23 DDR3_MA[11] SSTL O A33 DDR3_DQ[22] SSTL I/O A35 DDR3_DQ[16] SSTL I/O A37 DDR3_DQ[07] SSTL I/O A39 DDR3_DQ[01] SSTL I/O A41 VSS GND A43 VSS GND A45 VSS GND A47 VSS GND A49 VSS GND A5 VSS GND A51 VSS GND A53 RSVD A7 VSS GND A9 DDR3_DQ[39] SSTL I/O AA11 VSS GND AA13 DDR2_DQ[37] SSTL I/O AA15 DDR2_CS_N[3] SSTL O AA17 DDR2_CS_N[9] SSTL O AA19 DDR2_CS_N[4] SSTL O AA21 DDR2_CLK_DP[2] SSTL O AA23 DDR2_CLK_DP[3] SSTL O AA25 DDR2_CKE[0] SSTL O AA29 VSS GND AA3 VSS GND AA31 VSS GND AA33 DDR2_DQS_DN[03] SSTL I/O AA35 DDR2_DQ[28] SSTL I/O AA37 DDR2_DQ[10] SSTL I/O AA39 VSS GND AA41 DDR2_DQ[13] SSTL I/O AA43 PE3D_TX_DN[14] PCIEX3 O AA45 PE3D_TX_DP[12] PCIEX3 O AA47 PE3C_TX_DP[9] PCIEX3 O AA49 PE3A_RX_DP[3] PCIEX3 I AA5 VSS GND AA51 PE3B_RX_DP[7] PCIEX3 I AA53 PE3B_RX_DP[6] PCIEX3 I AA55 VSS GND AA7 DDR2_DQS_DN[14] SSTL I/O AA9 VSS GND AB10 DDR2_DQ[38] SSTL I/O AB12 DDR2_DQS_DP[13] SSTL I/O AB14 VSS GND AB16 DDR2_CS_N[6] SSTL O AB18 DDR2_MA[00] SSTL O AB20 DDR2_CS_N[0] SSTL O AB22 DDR2_CLK_DP[1] SSTL O AB24 DDR2_CLK_DP[0] SSTL O AB28 DDR2_DQS_DN[08] SSTL I/O AB32 DDR2_DQ[30] SSTL I/O AB34 DDR2_DQS_DN[12] SSTL I/O AB36 VSS GND AB38 DDR2_DQS_DP[01] SSTL I/O AB4 DDR2_DQS_DP[07] SSTL I/O AB40 DDR2_DQS_DP[10] SSTL I/O AB42 VSS GND AB44 PE3D_TX_DN[13] PCIEX3 O AB46 PE3C_TX_DN[11] PCIEX3 O AB48 RSVD AB50 PE3B_RX_DN[4] PCIEX3 I AB52 PE3B_RX_DN[5] PCIEX3 I AB54 PE2B_RX_DP[4] PCIEX3 I AB56 PE2B_RX_DP[5] PCIEX3 I AB6 VSS GND AB8 DDR2_DQS_DN[05] SSTL I/O AC11 DDR2_DQS_DN[04] SSTL I/O AC13 DDR2_DQ[32] SSTL I/O AC15 DDR23_RCOMP[1] Analog I AC17 VCCD_23 PWR AC19 VCCD_23 PWR AC21 VCCD_23 PWR AC23 VCCD_23 PWR AC25 VCCD_23 PWR AC27 DDR2_DQS_DP[08] SSTL I/O AC29 DDR2_DQS_DP[17] SSTL I/O AC3 DDR2_DQS_DN[07] SSTL I/O AC31 VSS GND AC33 DDR2_DQS_DP[03] SSTL I/O AC35 DDR2_DQ[24] SSTL I/O AC37 DDR2_DQ[11] SSTL I/O AC39 DDR2_DQS_DN[10] SSTL I/O Table 8-2. Land List by Land Number (Sheet 2 of 42) Land No. Land Name Buffer Type Direction 95 Datasheet Processor Land Listing AC41 DDR2_DQ[12] SSTL I/O AC43 PE3D_TX_DP[14] PCIEX3 O AC45 PE3D_TX_DN[12] PCIEX3 O AC47 PE3C_TX_DN[9] PCIEX3 O AC49 PE3A_RX_DN[3] PCIEX3 I AC5 DDR2_DQS_DP[16] SSTL I/O AC51 PE3B_RX_DN[7] PCIEX3 I AC53 PE3B_RX_DN[6] PCIEX3 I AC55 PE2B_RX_DP[6] PCIEX3 I AC7 DDR2_DQS_DP[05] SSTL I/O AC9 VSS GND AD10 DDR2_DQ[39] SSTL I/O AD12 DDR2_DQS_DN[13] SSTL I/O AD14 DDR2_DQ[36] SSTL I/O AD16 DDR2_CS_N[2] SSTL O AD18 DDR2_ODT[2] SSTL O AD20 DDR2_PAR_ERR_N SSTL I AD22 DDR2_ODT[4] SSTL O AD24 DDR2_CKE[3] SSTL O AD26 VSS GND AD28 DDR2_DQS_DN[17] SSTL I/O AD32 DDR2_DQ[31] SSTL I/O AD34 VSS GND AD36 VSS GND AD38 DDR2_DQS_DN[01] SSTL I/O AD4 DDR2_DQS_DN[16] SSTL I/O AD40 DDR2_DQ[09] SSTL I/O AD42 VSS GND AD44 VSS GND AD46 VSS GND AD48 VSS GND AD50 VSS GND AD52 VSS GND AD54 PE2B_RX_DN[4] PCIEX3 I AD56 PE2B_RX_DN[5] PCIEX3 I AD6 VSS GND AD8 DDR2_DQ[46] SSTL I/O AE11 DDR2_DQS_DP[04] SSTL I/O AE13 DDR2_DQ[33] SSTL I/O AE15 VSA PWR AE17 VSA PWR AE19 DDR2_CS_N[1] SSTL O AE21 DDR2_ODT[5] SSTL O AE23 DDR2_CKE[5] SSTL O Table 8-2. Land List by Land Number (Sheet 3 of 42) Land No. Land Name Buffer Type Direction AE25 DDR2_CKE[4] SSTL O AE27 DDR_RESET_C23_N CMOS1.5 v O AE29 VSS GND AE3 DDR2_DQ[63] SSTL I/O AE31 VSS GND AE33 DDR2_DQ[26] SSTL I/O AE35 DDR2_DQ[25] SSTL I/O AE37 DDR2_DQ[15] SSTL I/O AE39 VSS GND AE41 DDR2_DQ[08] SSTL I/O AE43 VSS GND AE45 VTTA PWR AE47 VSS GND AE49 VSS GND AE5 DDR2_DQ[59] SSTL I/O AE51 VSS GND AE53 VTTA PWR AE55 PE2B_RX_DN[6] PCIEX3 I AE57 PE2B_RX_DP[7] PCIEX3 I AE7 DDR2_DQ[47] SSTL I/O AE9 VSS GND AF10 DDR2_DQ[35] SSTL I/O AF12 VSS GND AF14 VSS_VSA_SENSE O AF16 VSS GND AF18 VSA PWR AF2 DDR2_DQ[62] SSTL I/O AF20 VSS GND AF22 VTTD PWR AF24 VTTD PWR AF26 VSS GND AF32 DDR2_DQ[27] SSTL I/O AF34 VSS GND AF36 VSS GND AF38 DDR2_DQ[14] SSTL I/O AF4 DDR2_DQ[58] SSTL I/O AF40 VSS GND AF42 VSS GND AF44 PE3A_RX_DP[0] PCIEX3 I AF46 PE3A_RX_DP[2] PCIEX3 I AF48 PE3C_RX_DP[8] PCIEX3 I AF50 PE3C_RX_DP[10] PCIEX3 I AF52 PE_RBIAS_SENSE PCIEX3 I Table 8-2. Land List by Land Number (Sheet 4 of 42) Land No. Land Name Buffer Type Direction Datasheet 96 Processor Land Listing AF54 VSS GND AF56 VSS GND AF58 PE2B_RX_DN[7] PCIEX3 I AF6 VSS GND AF8 DDR2_DQ[42] SSTL I/O AG1 VSS GND AG11 DDR2_DQ[34] SSTL I/O AG13 VSA_SENSE O AG15 VSA PWR AG17 VSA PWR AG19 VCC PWR AG21 VTTD PWR AG23 VTTD PWR AG25 VCC PWR AG27 VCC PWR AG29 VCC PWR AG3 VSS GND AG31 VCC PWR AG33 VCC PWR AG35 VCC PWR AG37 VCC PWR AG39 VCC PWR AG41 VCC PWR AG43 VSS GND AG45 PE3A_RX_DP[1] PCIEX3 I AG47 PE3D_RX_DP[12] PCIEX3 I AG49 PE3C_RX_DP[11] PCIEX3 I AG5 VSS GND AG51 PE3C_RX_DP[9] PCIEX3 I AG53 PE2B_TX_DP[4] PCIEX3 O AG55 VSS GND AG57 VSS GND AG7 DDR2_DQ[43] SSTL I/O AG9 VSS GND AH10 VSA PWR AH12 VSA PWR AH14 VSA PWR AH16 VSA PWR AH2 VSA PWR AH4 VSA PWR AH42 IVT_ID_N O AH44 PE3A_RX_DN[0] PCIEX3 I AH46 PE3A_RX_DN[2] PCIEX3 I AH48 PE3C_RX_DN[8] PCIEX3 I Table 8-2. Land List by Land Number (Sheet 5 of 42) Land No. Land Name Buffer Type Direction AH50 PE3C_RX_DN[10] PCIEX3 I AH52 PE_RBIAS PCIEX3 I/O AH54 PE2B_TX_DP[5] PCIEX3 O AH56 PE2C_RX_DP[8] PCIEX3 I AH58 VSS GND AH6 VSA PWR AH8 VSA PWR AJ1 VSA PWR AJ11 VSA PWR AJ13 VSA PWR AJ15 VSS GND AJ17 VSS GND AJ3 VSA PWR AJ43 PE_VREF_CAP PCIEX3 I/O AJ45 PE3A_RX_DN[1] PCIEX3 I AJ47 PE3D_RX_DN[12] PCIEX3 I AJ49 PE3C_RX_DN[11] PCIEX3 I AJ5 VSA PWR AJ51 PE3C_RX_DN[9] PCIEX3 I AJ53 PE2B_TX_DN[4] PCIEX3 O AJ55 RSVD AJ57 PE2C_RX_DP[10] PCIEX3 I AJ7 VSA PWR AJ9 VSA PWR AK10 VSS GND AK12 VSS GND AK14 VSS GND AK16 VSS GND AK2 VSS GND AK4 VSS GND AK42 VSS GND AK44 VSS GND AK46 VSS GND AK48 VSS GND AK50 VSS GND AK52 TXT_AGENT CMOS I AK54 PE2B_TX_DN[5] PCIEX3 O AK56 PE2C_RX_DN[8] PCIEX3 I AK58 PE2C_RX_DP[9] PCIEX3 I AK6 VSS GND AK8 VSS GND AL1 VCC PWR AL11 VCC PWR AL13 VCC PWR Table 8-2. Land List by Land Number (Sheet 6 of 42) Land No. Land Name Buffer Type Direction 97 Datasheet Processor Land Listing AL15 VCC PWR AL17 VCC PWR AL3 VCC PWR AL43 VSS GND AL45 VSS GND AL49 VSS GND AL5 VCC PWR AL51 VSS GND AL53 VSS GND AL55 RSVD AL57 PE2C_RX_DN[10] PCIEX3 I AL7 VCC PWR AL9 VCC PWR AM10 VCC PWR AM12 VCC PWR AM14 VCC PWR AM16 VCC PWR AM2 VCC PWR AM4 VCC PWR AM42 VTTD PWR AM44 RSVD AM46 PE3D_RX_DP[14] PCIEX3 I AM48 VTTA PWR AM50 PE2A_TX_DP[1] PCIEX3 O AM52 PE2A_TX_DP[3] PCIEX3 O AM54 VTTA PWR AM56 VSS GND AM58 PE2C_RX_DN[9] PCIEX3 I AM6 VCC PWR AM8 VCC PWR AN1 VCC PWR AN11 VCC PWR AN13 VCC PWR AN15 VCC PWR AN17 VCC PWR AN3 VCC PWR AN43 CPU_ONLY_RESET ODCMOS I/O AN45 PE3D_RX_DP[15] PCIEX3 I AN47 PE3D_RX_DP[13] PCIEX3 I AN49 PE2A_TX_DP[0] PCIEX3 O AN5 VCC PWR AN51 PE2A_TX_DP[2] PCIEX3 O AN53 PE2B_TX_DP[6] PCIEX3 O AN55 VSS GND Table 8-2. Land List by Land Number (Sheet 7 of 42) Land No. Land Name Buffer Type Direction AN57 VSS GND AN7 VCC PWR AN9 VCC PWR AP10 VCC PWR AP12 VCC PWR AP14 VCC PWR AP16 VCC PWR AP2 VCC PWR AP4 VCC PWR AP42 VSS GND AP44 VSS GND AP46 PE3D_RX_DN[14] PCIEX3 I AP48 RSVD AP50 PE2A_TX_DN[1] PCIEX3 O AP52 PE2A_TX_DN[3] PCIEX3 O AP54 PE2B_TX_DP[7] PCIEX3 O AP56 PE2D_RX_DP[13] PCIEX3 I AP58 VSS GND AP6 VCC PWR AP8 VCC PWR AR1 VSS GND AR11 VSS GND AR13 VSS GND AR15 VSS GND AR17 VSS GND AR3 VSS GND AR43 BPM_N[0] ODCMOS I/O AR45 PE3D_RX_DN[15] PCIEX3 I AR47 PE3D_RX_DN[13] PCIEX3 I AR49 PE2A_TX_DN[0] PCIEX3 O AR5 VSS GND AR51 PE2A_TX_DN[2] PCIEX3 O AR53 PE2B_TX_DN[6] PCIEX3 O AR55 RSVD AR57 PE2C_RX_DP[11] PCIEX3 I AR7 VSS GND AR9 VSS GND AT10 VSS GND AT12 VSS GND AT14 VSS GND AT16 VSS GND AT2 VSS GND AT4 VSS GND AT42 VTTD PWR Table 8-2. Land List by Land Number (Sheet 8 of 42) Land No. Land Name Buffer Type Direction Datasheet 98 Processor Land Listing AT44 BPM_N[1] ODCMOS I/O AT46 VSS GND AT48 BIST_ENABLE CMOS I AT52 VSS GND AT54 PE2B_TX_DN[7] PCIEX3 O AT56 PE2D_RX_DN[13] PCIEX3 I AT58 PE2D_RX_DP[12] PCIEX3 I AT6 VSS GND AT8 VSS GND AU1 VCC PWR AU11 VCC PWR AU13 VCC PWR AU15 VCC PWR AU17 VCC PWR AU3 VCC PWR AU43 BPM_N[2] ODCMOS I/O AU45 VSS GND AU47 VSS GND AU49 VSS GND AU5 VCC PWR AU51 VSS GND AU53 VTTA PWR AU55 RSVD AU57 PE2C_RX_DN[11] PCIEX3 I AU7 VCC PWR AU9 VCC PWR AV10 VCC PWR AV12 VCC PWR AV14 VCC PWR AV16 VCC PWR AV2 VCC PWR AV4 VCC PWR AV42 VSS GND AV44 BPM_N[3] ODCMOS I/O AV46 RSVD AV48 PE2D_TX_DP[14] PCIEX3 O AV50 PE2D_TX_DP[12] PCIEX3 O AV52 PE2C_TX_DP[8] PCIEX3 O AV54 VSS GND AV56 VSS GND AV58 PE2D_RX_DN[12] PCIEX3 I AV6 VCC PWR AV8 VCC PWR AW1 VCC PWR Table 8-2. Land List by Land Number (Sheet 9 of 42) Land No. Land Name Buffer Type Direction AW11 VCC PWR AW13 VCC PWR AW15 VCC PWR AW17 VCC PWR AW3 VCC PWR AW43 BPM_N[5] ODCMOS I/O AW45 BCLK1_DP CMOS I AW47 PE2D_TX_DP[15] PCIEX3 O AW49 PE2D_TX_DP[13] PCIEX3 O AW5 VCC PWR AW51 PE2C_TX_DP[11] PCIEX3 O AW53 PE2C_TX_DP[9] PCIEX3 O AW55 VSS GND AW57 VSS GND AW7 VCC PWR AW9 VCC PWR AY10 VCC PWR AY12 VCC PWR AY14 VCC PWR AY16 VCC PWR AY2 VCC PWR AY4 VCC PWR AY42 VTTD PWR AY44 BPM_N[7] ODCMOS I/O AY46 RSVD AY48 PE2D_TX_DN[14] PCIEX3 O AY50 PE2D_TX_DN[12] PCIEX3 O AY52 PE2C_TX_DN[8] PCIEX3 O AY54 PE2C_TX_DP[10] PCIEX3 O AY56 PE2D_RX_DP[15] PCIEX3 I AY58 PE2D_RX_DP[14] PCIEX3 I AY6 VCC PWR AY8 VCC PWR B10 DDR3_DQS_DN[04] SSTL I/O B12 DDR3_DQ[37] SSTL I/O B14 DDR3_CAS_N SSTL O B16 DDR3_RAS_N SSTL O B18 DDR3_MA_PAR SSTL O B20 DDR3_MA[03] SSTL O B22 DDR3_MA[07] SSTL O B24 DDR3_BA[2] SSTL O B32 DDR3_DQ[23] SSTL I/O B34 DDR3_DQS_DN[11] SSTL I/O B36 VSS GND Table 8-2. Land List by Land Number (Sheet 10 of Land No. Land Name Buffer Type Direction 99 Datasheet Processor Land Listing B38 DDR3_DQS_DN[00] SSTL I/O B40 DDR3_DQ[00] SSTL I/O B42 DMI_TX_DP[0] PCIEX O B44 DMI_TX_DP[2] PCIEX O B46 RSVD B48 DMI_RX_DP[1] PCIEX I B50 DMI_RX_DP[3] PCIEX I B52 VSS GND B54 VSA PWR B6 VSS GND B8 VSS GND BA1 VCC PWR BA11 VCC PWR BA13 VCC PWR BA15 VCC PWR BA17 VCC PWR BA3 VCC PWR BA43 BPM_N[6] ODCMOS I/O BA45 BCLK1_DN CMOS I BA47 PE2D_TX_DN[15] PCIEX3 O BA49 PE2D_TX_DN[13] PCIEX3 O BA5 VCC PWR BA51 PE2C_TX_DN[11] PCIEX3 O BA53 PE2C_TX_DN[9] PCIEX3 O BA55 TEST4 I BA57 PE2D_RX_DN[14] PCIEX3 I BA7 VCC PWR BA9 VCC PWR BB10 VCC PWR BB12 VCC PWR BB14 VCC PWR BB16 VCC PWR BB2 VCC PWR BB4 VCC PWR BB42 VSS GND BB44 BPM_N[4] ODCMOS I/O BB46 VSS GND BB48 VSS GND BB50 VSS GND BB52 VSS GND BB54 PE2C_TX_DN[10] PCIEX3 O BB56 PE2D_RX_DN[15] PCIEX3 I BB58 VSS GND BB6 VCC PWR Table 8-2. Land List by Land Number (Sheet 11 of Land No. Land Name Buffer Type Direction BB8 VCC PWR BC1 VSS GND BC11 VSS GND BC13 VSS GND BC15 VSS GND BC17 VSS GND BC3 VSS GND BC43 VSS GND BC45 VSS GND BC47 RSVD BC5 VSS GND BC51 ERROR_N[2] ODCMOS O BC53 VSS GND BC55 VSS GND BC57 VSS GND BC7 VSS GND BC9 VSS GND BD10 VSS GND BD12 VSS GND BD14 VSS GND BD16 VSS GND BD2 VSS GND BD4 VSS GND BD42 VTTD PWR BD44 RSVD BD46 RSVD BD48 RSVD BD50 ERROR_N[0] ODCMOS O BD52 PROCHOT_N ODCMOS I/O BD54 VSS GND BD56 VSS GND BD6 VSS GND BD8 VSS GND BE1 VCC PWR BE11 VCC PWR BE13 VCC PWR BE15 VCC PWR BE17 VCC PWR BE3 VCC PWR BE43 RSVD BE45 RSVD BE47 RSVD BE49 VSS GND BE5 VCC PWR Table 8-2. Land List by Land Number (Sheet 12 of Land No. Land Name Buffer Type Direction Datasheet 100 Processor Land Listing BE51 VSS GND BE7 VCC PWR BE9 VCC PWR BF10 VCC PWR BF12 VCC PWR BF14 VCC PWR BF16 VCC PWR BF2 VCC PWR BF4 VCC PWR BF42 VSS GND BF44 VSS GND BF46 RSVD BF48 PEHPSDA ODCMOS I/O BF6 VCC PWR BF8 VCC PWR BG1 VCC PWR BG11 VCC PWR BG13 VCC PWR BG15 VCC PWR BG17 VCC PWR BG3 VCC PWR BG43 RSVD BG45 RSVD BG47 VSS GND BG5 VCC PWR BG7 VCC PWR BG9 VCC PWR BH10 VCC PWR BH12 VCC PWR BH14 VCC PWR BH16 VCC PWR BH2 VCC PWR BH4 VCC PWR BH42 VTTD PWR BH44 RSVD BH46 RSVD BH48 PEHPSCL ODCMOS I/O BH58 VSS GND BH6 VCC PWR BH8 VCC PWR BJ1 VCC PWR BJ11 VCC PWR BJ13 VCC PWR BJ15 VCC PWR Table 8-2. Land List by Land Number (Sheet 13 of Land No. Land Name Buffer Type Direction BJ17 VCC PWR BJ3 VCC PWR BJ43 RSVD BJ45 RSVD BJ47 PECI PECI I/O BJ5 VCC PWR BJ53 PWRGOOD CMOS I BJ55 VSS GND BJ57 VSS GND BJ7 VCC PWR BJ9 VCC PWR BK10 VCC PWR BK12 VCC PWR BK14 VCC PWR BK16 VCC PWR BK2 VCC PWR BK4 VCC PWR BK42 VSS GND BK44 RSVD BK46 VSS GND BK48 VSS GND BK50 VSS GND BK52 VSS GND BK54 VSS GND BK56 VTTD PWR BK6 VCC PWR BK8 VCC PWR BL1 VSS GND BL11 VSS GND BL13 VSS GND BL15 VSS GND BL17 VSS GND BL3 VSS GND BL43 RSVD BL45 RSVD BL47 THERMTRIP_N ODCMOS O BL49 VSS GND BL5 VSS GND BL51 VTTD PWR BL7 VSS GND BL9 VSS GND BM10 VSS GND BM12 VSS GND BM14 VSS GND Table 8-2. Land List by Land Number (Sheet 14 of Land No. Land Name Buffer Type Direction 101 Datasheet Processor Land Listing BM16 VSS GND BM2 VSS GND BM4 VSS GND BM42 VTTD PWR BM44 RSVD BM46 RSVD BM6 VSS GND BM8 VSS GND BN1 VCC PWR BN11 VCC PWR BN13 VCC PWR BN15 VCC PWR BN17 VCC PWR BN3 VCC PWR BN43 VSS GND BN45 VSS GND BN47 RSVD BN5 VCC PWR BN7 VCC PWR BN9 VCC PWR BP10 VCC PWR BP12 VCC PWR BP14 VCC PWR BP16 VCC PWR BP2 VCC PWR BP4 VCC PWR BP42 VTTD_SENSE O BP44 RSVD BP46 RSVD BP58 VSS GND BP6 VCC PWR BP8 VCC PWR BR1 VCC PWR BR11 VCC PWR BR13 VCC PWR BR15 VCC PWR BR17 VCC PWR BR3 VCC PWR BR43 RSVD BR45 SVIDDATA ODCMOS I/O BR47 RSVD BR5 VCC PWR BR53 VSS GND BR55 VTTD PWR Table 8-2. Land List by Land Number (Sheet 15 of Land No. Land Name Buffer Type Direction BR57 VSS GND BR7 VCC PWR BR9 VCC PWR BT10 VCC PWR BT12 VCC PWR BT14 VCC PWR BT16 VCC PWR BT2 VCC PWR BT4 VCC PWR BT42 VSS_VTTD_SENSE O BT44 RSVD BT46 VSS GND BT48 VSS GND BT50 VSS GND BT52 VSS GND BT54 VSS GND BT56 VSS GND BT6 VCC PWR BT8 VCC PWR BU1 VCC PWR BU11 VCC PWR BU13 VCC PWR BU15 VCC PWR BU17 VCC PWR BU3 VCC PWR BU43 RSVD BU45 VSS GND BU47 VTTD PWR BU49 SKTOCC_N O BU5 VCC PWR BU51 VSS GND BU7 VCC PWR BU9 VCC PWR BV10 VCC PWR BV12 VCC PWR BV14 VCC PWR BV16 VCC PWR BV2 VCC PWR BV4 VCC PWR BV42 VTTD PWR BV44 TMS CMOS I BV6 VCC PWR BV8 VCC PWR BW1 VSS GND Table 8-2. Land List by Land Number (Sheet 16 of Land No. Land Name Buffer Type Direction Datasheet 102 Processor Land Listing BW11 VSS GND BW13 VSS GND BW15 VSS GND BW17 VSS GND BW3 VCC_SENSE O BW43 TDI CMOS I BW5 VSS GND BW7 VSS GND BW9 DDR0_DQ[28] SSTL I/O BY10 DDR0_DQ[24] SSTL I/O BY12 DDR0_DQ[25] SSTL I/O BY14 VCCPLL PWR BY16 DDR_VREFDQRX_C0 1 DC I BY18 VCC PWR BY2 VSS_VCC_SENSE O BY20 VTTD PWR BY22 VTTD PWR BY24 VSS GND BY26 VCC PWR BY28 VCC PWR BY30 VCC PWR BY32 VCC PWR BY34 VCC PWR BY36 VCC PWR BY38 VCC PWR BY4 VSS GND BY40 VCC PWR BY42 VSS GND BY44 TCK CMOS I BY46 RSVD BY58 VSS GND BY6 DDR0_DQ[04] SSTL I/O BY8 VSS GND C11 VSS GND C13 VSS GND C15 VCCD_23 PWR C17 VCCD_23 PWR C19 VCCD_23 PWR C21 VCCD_23 PWR C23 VCCD_23 PWR C3 VSS GND C33 VSS GND C35 DDR3_DQ[21] SSTL I/O Table 8-2. Land List by Land Number (Sheet 17 of Land No. Land Name Buffer Type Direction C37 DDR3_DQ[02] SSTL I/O C39 VSS GND C41 VSS GND C43 DMI_TX_DP[1] PCIEX O C45 DMI_TX_DP[3] PCIEX O C47 DMI_RX_DP[0] PCIEX I C49 DMI_RX_DP[2] PCIEX I C5 VSS GND C51 PE1A_RX_DP[0] PCIEX3 I C53 RSVD C55 VSS GND C7 DDR3_DQ[52] SSTL I/O C9 DDR3_DQ[34] SSTL I/O CA1 DDR0_DQ[12] SSTL I/O CA11 VSS GND CA13 VCCPLL PWR CA15 VCCPLL PWR CA17 DDR01_RCOMP[0] Analog I CA19 VSS GND CA21 VTTD PWR CA23 VTTD PWR CA25 VCC PWR CA27 VSS GND CA29 VCC PWR CA3 DDR0_DQ[13] SSTL I/O CA31 VSS GND CA33 VSS GND CA35 VSS GND CA37 VSS GND CA39 VSS GND CA41 VSS GND CA43 TDO ODCMOS O CA45 RSVD CA5 VSS GND CA53 VTTA PWR CA55 VSS GND CA57 VSS GND CA7 DDR0_DQ[05] SSTL I/O CA9 DDR0_DQ[29] SSTL I/O CB10 DDR0_DQS_DP[12] SSTL I/O CB12 DDR0_DQ[26] SSTL I/O CB16 VSS GND CB18 DDR_RESET_C01_N CMOS1.5 v O Table 8-2. Land List by Land Number (Sheet 18 of Land No. Land Name Buffer Type Direction 103 Datasheet Processor Land Listing CB2 DDR0_DQ[08] SSTL I/O CB20 DDR01_RCOMP[2] Analog I CB22 MEM_HOT_C01_N ODCMOS I/O CB24 DDR0_ODT[4] SSTL O CB26 DDR0_CS_N[6] SSTL O CB28 DDR0_CS_N[3] SSTL O CB30 DDR0_DQ[37] SSTL I/O CB32 DDR0_DQS_DN[13] SSTL I/O CB34 DDR0_DQ[39] SSTL I/O CB36 VSS GND CB38 DDR0_DQ[48] SSTL I/O CB4 DDR0_DQ[09] SSTL I/O CB40 DDR0_DQS_DN[06] SSTL I/O CB42 DDR0_DQ[55] SSTL I/O CB44 SVIDCLK ODCMOS O CB46 VSS GND CB48 VSS GND CB50 VSS GND CB52 VSS GND CB54 ERROR_N[1] ODCMOS O CB56 VSS GND CB6 VSS GND CB8 VSS GND CC11 DDR0_DQS_DN[12] SSTL I/O CC13 VSS GND CC17 DDR0_DQS_DP[08] SSTL I/O CC19 DDR01_RCOMP[1] Analog I CC21 DDR0_PAR_ERR_N SSTL I CC23 DDR0_CS_N[2] SSTL O CC25 DDR0_CS_N[7] SSTL O CC27 DDR0_ODT[5] SSTL O CC29 VSS GND CC3 VSS GND CC31 DDR0_DQ[33] SSTL I/O CC33 DDR0_DQS_DP[04] SSTL I/O CC35 DDR0_DQ[35] SSTL I/O CC37 DDR0_DQ[52] SSTL I/O CC39 DDR0_DQS_DP[15] SSTL I/O CC41 DDR0_DQ[54] SSTL I/O CC43 VSS GND CC45 VTTA PWR CC47 VSS GND CC49 VSS GND CC5 DDR0_DQS_DP[10] SSTL I/O Table 8-2. Land List by Land Number (Sheet 19 of Land No. Land Name Buffer Type Direction CC51 CAT_ERR_N ODCMOS I/O CC7 DDR0_DQ[00] SSTL I/O CC9 VSS GND CD10 DDR0_DQS_DN[03] SSTL I/O CD12 DDR0_DQ[27] SSTL I/O CD16 DDR0_DQS_DP[17] SSTL I/O CD18 VSS GND CD20 VCCD_01 PWR CD22 VCCD_01 PWR CD24 VCCD_01 PWR CD26 VCCD_01 PWR CD28 VCCD_01 PWR CD30 DDR0_DQ[36] SSTL I/O CD32 DDR0_DQS_DP[13] SSTL I/O CD34 DDR0_DQ[38] SSTL I/O CD36 VSS GND CD38 DDR0_DQ[49] SSTL I/O CD4 DDR0_DQS_DN[10] SSTL I/O CD40 DDR0_DQS_DP[06] SSTL I/O CD42 DDR0_DQ[51] SSTL I/O CD44 RSVD CD6 VSS GND CD8 DDR0_DQ[01] SSTL I/O CE11 DDR0_DQS_DP[03] SSTL I/O CE13 VSS GND CE17 DDR0_DQS_DN[08] SSTL I/O CE19 DDR0_CKE[5] SSTL O CE21 DDR0_CLK_DN[2] SSTL O CE23 DDR0_CLK_DN[1] SSTL O CE25 DDR0_ODT[0] SSTL O CE27 DDR0_ODT[1] SSTL O CE29 DDR0_RAS_N SSTL O CE3 DDR0_DQS_DN[01] SSTL I/O CE31 DDR0_DQ[32] SSTL I/O CE33 DDR0_DQS_DN[04] SSTL I/O CE35 DDR0_DQ[34] SSTL I/O CE37 DDR0_DQ[53] SSTL I/O CE39 DDR0_DQS_DN[15] SSTL I/O CE41 DDR0_DQ[50] SSTL I/O CE43 RSVD CE5 VSS GND CE7 DDR0_DQS_DP[09] SSTL I/O CE9 VSS GND CF10 DDR0_DQ[31] SSTL I/O Table 8-2. Land List by Land Number (Sheet 20 of Land No. Land Name Buffer Type Direction Datasheet 104 Processor Land Listing CF12 VSS GND CF14 VSS GND CF16 DDR0_DQS_DN[17] SSTL I/O CF20 DDR0_CKE[4] SSTL O CF22 DDR0_CLK_DN[3] SSTL O CF24 DDR0_CLK_DN[0] SSTL O CF26 DDR0_CS_N[5] SSTL O CF28 DDR0_ODT[3] SSTL O CF30 VSS GND CF32 VSS GND CF34 VSS GND CF36 VSS GND CF38 VSS GND CF4 DDR0_DQS_DP[01] SSTL I/O CF40 VSS GND CF42 VSS GND CF44 RSVD CF6 VSS GND CF8 DDR0_DQS_DN[09] SSTL I/O CG11 RSVD CG13 DDR0_DQ[20] SSTL I/O CG15 VSS GND CG19 DDR0_MA[14] SSTL O CG21 DDR0_CLK_DP[2] SSTL O CG23 DDR0_CLK_DP[1] SSTL O CG25 DDR0_MA[02] SSTL O CG27 DDR0_CS_N[4] SSTL O CG29 DDR0_MA[13] SSTL O CG3 DDR0_DQ[14] SSTL I/O CG31 VSS GND CG33 VSS GND CG35 VSS GND CG37 VSS GND CG39 VSS GND CG41 VSS GND CG43 VSS GND CG5 DDR0_DQ[15] SSTL I/O CG53 VSS GND CG55 VTTA PWR CG7 DDR0_DQS_DN[00] SSTL I/O CG9 VSS GND CH10 DDR0_DQ[30] SSTL I/O CH12 VSS GND CH14 DDR0_DQS_DN[02] SSTL I/O Table 8-2. Land List by Land Number (Sheet 21 of Land No. Land Name Buffer Type Direction CH16 VSS GND CH20 DDR0_CKE[2] SSTL O CH22 DDR0_CLK_DP[3] SSTL O CH24 DDR0_CLK_DP[0] SSTL O CH26 DDR0_CS_N[1] SSTL O CH28 DDR0_ODT[2] SSTL O CH30 DDR0_DQ[45] SSTL I/O CH32 DDR0_DQS_DN[14] SSTL I/O CH34 DDR0_DQ[47] SSTL I/O CH36 VSS GND CH38 DDR0_DQ[56] SSTL I/O CH4 DDR0_DQ[10] SSTL I/O CH40 DDR0_DQS_DN[07] SSTL I/O CH42 DDR0_DQ[58] SSTL I/O CH44 VSS GND CH46 VSS GND CH48 VSS GND CH50 VSS GND CH52 VSS GND CH54 VSS GND CH56 EAR_N ODCMOS I/O CH6 VSS GND CH8 DDR0_DQS_DP[00] SSTL I/O CJ11 VSS GND CJ13 DDR0_DQS_DP[11] SSTL I/O CJ15 DDR0_DQ[22] SSTL I/O CJ17 VSS GND CJ19 VCCD_01 PWR CJ21 VCCD_01 PWR CJ23 VCCD_01 PWR CJ25 VCCD_01 PWR CJ27 VCCD_01 PWR CJ29 VSS GND CJ3 VSS GND CJ31 DDR0_DQ[41] SSTL I/O CJ33 DDR0_DQS_DP[05] SSTL I/O CJ35 DDR0_DQ[43] SSTL I/O CJ37 DDR0_DQ[60] SSTL I/O CJ39 DDR0_DQS_DP[16] SSTL I/O CJ41 DDR0_DQ[62] SSTL I/O CJ43 VSS GND CJ45 VSS GND CJ47 VSS GND CJ49 VTTA PWR Table 8-2. Land List by Land Number (Sheet 22 of Land No. Land Name Buffer Type Direction 105 Datasheet Processor Land Listing CJ5 DDR0_DQ[11] SSTL I/O CJ51 VSS GND CJ7 DDR0_DQ[06] SSTL I/O CJ9 VSS GND CK10 VSS GND CK12 DDR0_DQ[16] SSTL I/O CK14 DDR0_DQS_DP[02] SSTL I/O CK16 DDR0_DQ[18] SSTL I/O CK20 DDR0_MA[12] SSTL O CK22 DDR0_MA[08] SSTL O CK24 DDR0_MA[03] SSTL O CK26 DDR0_MA[10] SSTL O CK28 DDR0_CS_N[9] SSTL O CK30 DDR0_DQ[44] SSTL I/O CK32 DDR0_DQS_DP[14] SSTL I/O CK34 DDR0_DQ[46] SSTL I/O CK36 VSS GND CK38 DDR0_DQ[57] SSTL I/O CK4 VSS GND CK40 DDR0_DQS_DP[07] SSTL I/O CK42 DDR0_DQ[59] SSTL I/O CK44 RESET_N CMOS I CK6 VSS GND CK8 DDR0_DQ[02] SSTL I/O CL11 DDR0_DQ[21] SSTL I/O CL13 DDR0_DQS_DN[11] SSTL I/O CL15 DDR0_DQ[23] SSTL I/O CL17 VSS GND CL19 DDR0_CKE[0] SSTL O CL21 DDR0_MA[11] SSTL O CL23 DDR0_MA[05] SSTL O CL25 DDR0_MA[00] SSTL O CL27 DDR0_CS_N[8] SSTL O CL29 DDR0_CAS_N SSTL O CL3 DDR1_DQ[05] SSTL I/O CL31 DDR0_DQ[40] SSTL I/O CL33 DDR0_DQS_DN[05] SSTL I/O CL35 DDR0_DQ[42] SSTL I/O CL37 DDR0_DQ[61] SSTL I/O CL39 DDR0_DQS_DN[16] SSTL I/O CL41 DDR0_DQ[63] SSTL I/O CL43 VSS GND CL5 VSS GND CL7 DDR0_DQ[07] SSTL I/O Table 8-2. Land List by Land Number (Sheet 23 of Land No. Land Name Buffer Type Direction CL9 DDR0_DQ[03] SSTL I/O CM10 VSS GND CM12 DDR0_DQ[17] SSTL I/O CM14 VSS GND CM16 DDR0_DQ[19] SSTL I/O CM18 DDR0_CKE[1] SSTL O CM20 DDR0_BA[2] SSTL O CM22 DDR0_MA[07] SSTL O CM24 DDR0_MA[04] SSTL O CM26 DDR0_MA_PAR SSTL O CM28 DDR0_BA[0] SSTL O CM30 VSS GND CM32 VSS GND CM34 VSS GND CM36 VSS GND CM38 VSS GND CM4 DDR1_DQ[04] SSTL I/O CM40 VSS GND CM42 VSS GND CM44 BCLK0_DN CMOS I CM6 VSS GND CM8 VSS GND CN11 VSS GND CN13 VSS GND CN15 VSS GND CN17 VSS GND CN19 DDR0_MA[15] SSTL O CN21 DDR0_MA[09] SSTL O CN23 DDR0_MA[06] SSTL O CN25 DDR0_CS_N[0] SSTL O CN27 DDR0_BA[1] SSTL O CN29 DDR0_WE_N SSTL O CN3 VSS GND CN31 VSS GND CN33 VSS GND CN35 VSS GND CN37 VSS GND CN39 VSS GND CN41 DDR_VREFDQTX_C0 1 DC O CN43 BCLK0_DP CMOS I CN5 VSS GND CN53 VSS GND CN55 VSS GND Table 8-2. Land List by Land Number (Sheet 24 of Land No. Land Name Buffer Type Direction Datasheet 106 Processor Land Listing CN57 VSS GND CN7 VSS GND CN9 VSS GND CP10 DDR1_DQ[19] SSTL I/O CP12 VSS GND CP14 DDR1_DQS_DN[12] SSTL I/O CP16 VSS GND CP18 DDR0_CKE[3] SSTL O CP2 DDR1_DQ[01] SSTL I/O CP20 VCCD_01 PWR CP22 VCCD_01 PWR CP24 VCCD_01 PWR CP26 VCCD_01 PWR CP28 VCCD_01 PWR CP30 DDR1_DQ[33] SSTL I/O CP32 DDR1_DQS_DP[04] SSTL I/O CP34 DDR1_DQ[35] SSTL I/O CP36 VSS GND CP38 DDR1_DQS_DP[15] SSTL I/O CP4 DDR1_DQ[00] SSTL I/O CP40 VSS GND CP42 VSS GND CP44 VSS GND CP46 VSS GND CP48 VSS GND CP50 VSS GND CP52 VSS GND CP54 RSVD CP56 VSS GND CP6 DDR1_DQ[20] SSTL I/O CP8 DDR1_DQS_DP[11] SSTL I/O CR1 DDR1_DQS_DN[09] SSTL I/O CR11 VSS GND CR13 DDR1_DQ[24] SSTL I/O CR15 DDR1_DQS_DN[03] SSTL I/O CR17 DDR1_DQ[26] SSTL I/O CR19 DDR1_CKE[4] SSTL O CR21 DDR1_CS_N[8] SSTL O CR23 DDR1_CS_N[2] SSTL O CR25 DDR0_MA[01] SSTL O CR27 DDR1_CS_N[3] SSTL O CR29 DDR1_DQ[37] SSTL I/O CR3 DDR1_DQS_DP[00] SSTL I/O CR31 DDR1_DQS_DN[13] SSTL I/O Table 8-2. Land List by Land Number (Sheet 25 of Land No. Land Name Buffer Type Direction CR33 DDR1_DQ[39] SSTL I/O CR35 VSS GND CR37 DDR1_DQ[48] SSTL I/O CR39 DDR1_DQS_DN[06] SSTL I/O CR41 DDR1_DQ[50] SSTL I/O CR43 SVIDALERT_N CMOS I CR45 VTTA PWR CR47 VSS GND CR49 VSS GND CR5 VSS GND CR51 VTTA PWR CR7 DDR1_DQ[16] SSTL I/O CR9 VSS GND CT10 DDR1_DQ[18] SSTL I/O CT12 DDR1_DQ[28] SSTL I/O CT14 DDR1_DQS_DP[12] SSTL I/O CT16 DDR1_DQ[30] SSTL I/O CT18 DDR1_CKE[5] SSTL O CT2 DDR1_DQS_DP[09] SSTL I/O CT20 DDR1_CKE[0] SSTL O CT22 DDR1_ODT[0] SSTL O CT24 DDR1_CS_N[5] SSTL O CT26 DDR1_CS_N[7] SSTL O CT28 VSS GND CT30 DDR1_DQ[32] SSTL I/O CT32 DDR1_DQS_DN[04] SSTL I/O CT34 DDR1_DQ[34] SSTL I/O CT36 DDR1_DQ[52] SSTL I/O CT38 DDR1_DQS_DN[15] SSTL I/O CT4 DDR1_DQS_DN[00] SSTL I/O CT40 DDR1_DQ[54] SSTL I/O CT42 VSS GND CT54 TRST_N CMOS I CT6 DDR1_DQ[21] SSTL I/O CT8 DDR1_DQS_DN[11] SSTL I/O CU1 VSS GND CU11 VSS GND CU13 DDR1_DQ[25] SSTL I/O CU15 DDR1_DQS_DP[03] SSTL I/O CU17 DDR1_DQ[27] SSTL I/O CU19 DDR1_CKE[1] SSTL O CU21 DDR1_PAR_ERR_N SSTL I CU23 DDR1_CS_N[1] SSTL O CU25 DDR1_CS_N[4] SSTL O Table 8-2. Land List by Land Number (Sheet 26 of Land No. Land Name Buffer Type Direction 107 Datasheet Processor Land Listing CU27 DDR1_ODT[4] SSTL O CU29 DDR1_DQ[36] SSTL I/O CU3 VSS GND CU31 DDR1_DQS_DP[13] SSTL I/O CU33 DDR1_DQ[38] SSTL I/O CU35 VSS GND CU37 DDR1_DQ[49] SSTL I/O CU39 DDR1_DQS_DP[06] SSTL I/O CU41 DDR1_DQ[51] SSTL I/O CU5 VSS GND CU7 DDR1_DQ[17] SSTL I/O CU9 DDR1_DQS_DP[02] SSTL I/O CV10 DDR1_DQ[23] SSTL I/O CV12 DDR1_DQ[29] SSTL I/O CV14 VSS GND CV16 DDR1_DQ[31] SSTL I/O CV18 VSS GND CV2 DDR1_DQ[06] SSTL I/O CV20 DDR1_CLK_DN[0] SSTL O CV22 DDR1_CLK_DN[1] SSTL O CV24 DDR1_CLK_DP[2] SSTL O CV26 DDR1_ODT[3] SSTL O CV28 DDR1_WE_N SSTL O CV30 VSS GND CV32 VSS GND CV34 VSS GND CV36 DDR1_DQ[53] SSTL I/O CV38 VSS GND CV4 DDR1_DQ[02] SSTL I/O CV40 DDR1_DQ[55] SSTL I/O CV42 VSS GND CV54 VSS GND CV58 VSS GND CV6 VSS GND CV8 DDR1_DQS_DN[02] SSTL I/O CW1 TEST1 O CW11 VSS GND CW13 VSS GND CW15 VSS GND CW17 DRAM_PWR_OK_C0 1 CMOS1.5 v I CW19 VCCD_01 PWR CW21 VCCD_01 PWR CW23 VCCD_01 PWR Table 8-2. Land List by Land Number (Sheet 27 of Land No. Land Name Buffer Type Direction CW25 VCCD_01 PWR CW27 VCCD_01 PWR CW29 VSS GND CW3 DDR1_DQ[07] SSTL I/O CW31 VSS GND CW33 VSS GND CW35 VSS GND CW37 VSS GND CW39 VSS GND CW41 DDR_SDA_C01 ODCMOS I/O CW5 VSS GND CW51 VSS GND CW53 VSS GND CW55 VSS GND CW57 VSS GND CW7 VSS GND CW9 DDR1_DQ[22] SSTL I/O CY10 VSS GND CY12 VSS GND CY14 DDR1_DQS_DP[17] SSTL I/O CY16 VSS GND CY18 DDR1_CKE[2] SSTL O CY2 VSS GND CY20 DDR1_CLK_DP[0] SSTL O CY22 DDR1_CLK_DP[1] SSTL O CY24 DDR1_CLK_DN[2] SSTL O CY26 DDR1_ODT[2] SSTL O CY28 DDR1_ODT[5] SSTL O CY30 DDR1_CAS_N SSTL O CY32 DDR1_DQ[45] SSTL I/O CY34 DDR1_DQS_DN[05] SSTL I/O CY36 VSS GND CY38 DDR1_DQS_DN[16] SSTL I/O CY4 DDR1_DQ[03] SSTL I/O CY40 VSS GND CY42 DDR_SCL_C01 ODCMOS I/O CY44 VSS GND CY46 RSVD CY48 RSVD CY50 VSS GND CY56 RSVD CY58 RSVD CY6 DDR1_DQ[12] SSTL I/O CY8 VSS GND Table 8-2. Land List by Land Number (Sheet 28 of Land No. Land Name Buffer Type Direction Datasheet 108 Processor Land Listing D10 DDR3_DQS_DP[04] SSTL I/O D12 DDR3_DQ[32] SSTL I/O D14 DDR3_ODT[4] SSTL O D16 DDR3_CS_N[8] SSTL O D18 DDR3_MA[10] SSTL O D2 VSS GND D20 DDR3_MA[04] SSTL O D22 DDR3_MA[08] SSTL O D24 DDR3_MA[14] SSTL O D26 VSS GND D32 DDR3_DQ[18] SSTL I/O D34 DDR3_DQS_DP[11] SSTL I/O D36 VSS GND D38 DDR3_DQS_DP[00] SSTL I/O D4 TEST3 O D40 DDR3_DQ[05] SSTL I/O D42 DMI_TX_DN[0] PCIEX O D44 DMI_TX_DN[2] PCIEX O D46 RSVD D48 DMI_RX_DN[1] PCIEX I D50 DMI_RX_DN[3] PCIEX I D52 PE1A_RX_DP[1] PCIEX3 I D54 PE1A_RX_DP[2] PCIEX3 I D56 RSVD D6 DDR3_DQ[53] SSTL I/O D8 VSS GND DA11 VSS GND DA17 DDR1_CKE[3] SSTL O DA19 DDR1_MA[09] SSTL O DA21 DDR1_CLK_DN[3] SSTL O DA23 DDR1_MA[03] SSTL O DA25 DDR1_ODT[1] SSTL O DA27 DDR1_CS_N[9] SSTL O DA29 DDR1_CS_N[6] SSTL O DA3 VSS GND DA31 DDR1_DQ[44] SSTL I/O DA33 DDR1_DQ[40] SSTL I/O DA35 DDR1_DQ[43] SSTL I/O DA37 DDR1_DQ[60] SSTL I/O DA39 DDR1_DQ[62] SSTL I/O DA41 VSS GND DA43 VSS GND DA45 VSS GND DA47 VSS GND Table 8-2. Land List by Land Number (Sheet 29 of Land No. Land Name Buffer Type Direction DA49 VTTA PWR DA5 VSS GND DA51 VSS GND DA55 SAFE_MODE_BOOT CMOS I DA57 RSVD DA7 DDR1_DQ[08] SSTL I/O DA9 VSS GND DB10 DDR1_DQ[14] SSTL I/O DB12 VSS GND DB14 DDR1_DQS_DN[17] SSTL I/O DB18 DDR1_MA[14] SSTL O DB2 VSS GND DB20 DDR1_MA[08] SSTL O DB22 DDR1_MA[04] SSTL O DB24 DDR1_CS_N[0] SSTL O DB26 DDR1_BA[0] SSTL O DB28 DDR1_RAS_N SSTL O DB30 DDR1_MA[13] SSTL O DB32 VSS GND DB34 DDR1_DQS_DP[05] SSTL I/O DB36 VSS GND DB38 DDR1_DQS_DP[16] SSTL I/O DB4 TEST0 O DB40 DDR1_DQ[59] SSTL I/O DB56 RSVD DB58 VSS GND DB6 DDR1_DQ[13] SSTL I/O DB8 DDR1_DQS_DN[10] SSTL I/O DC11 DDR1_DQ[10] SSTL I/O DC15 DDR1_DQS_DP[08] SSTL I/O DC17 DDR1_MA[15] SSTL O DC19 DDR1_MA[12] SSTL O DC21 DDR1_CLK_DP[3] SSTL O DC23 DDR1_MA[00] SSTL O DC25 DDR1_BA[1] SSTL O DC3 VSS GND DC33 DDR1_DQS_DP[14] SSTL I/O DC35 DDR1_DQ[42] SSTL I/O DC37 DDR1_DQ[61] SSTL I/O DC39 DDR1_DQS_DP[07] SSTL I/O DC41 VSS GND DC5 VSS GND DC55 RSVD DC7 DDR1_DQ[09] SSTL I/O Table 8-2. Land List by Land Number (Sheet 30 of Land No. Land Name Buffer Type Direction 109 Datasheet Processor Land Listing DC9 DDR1_DQS_DN[01] SSTL I/O DD10 VSS GND DD12 VSS GND DD14 VSS GND DD18 VCCD_01 PWR DD20 VCCD_01 PWR DD22 VCCD_01 PWR DD24 VCCD_01 PWR DD26 VCCD_01 PWR DD32 DDR1_DQ[41] SSTL I/O DD34 VSS GND DD36 VSS GND DD38 VSS GND DD40 DDR1_DQ[58] SSTL I/O DD54 RSVD DD6 VSS GND DD8 DDR1_DQS_DP[10] SSTL I/O DE11 DDR1_DQ[11] SSTL I/O DE15 DDR1_DQS_DN[08] SSTL I/O DE17 VSS GND DE19 DDR1_MA[11] SSTL O DE21 DDR1_MA[06] SSTL O DE23 DDR1_MA[01] SSTL O DE25 DDR1_MA_PAR SSTL O DE33 DDR1_DQS_DN[14] SSTL I/O DE35 DDR1_DQ[47] SSTL I/O DE37 DDR1_DQ[56] SSTL I/O DE39 DDR1_DQS_DN[07] SSTL I/O DE41 VSS GND DE53 VSS GND DE55 RSVD DE7 VSS GND DE9 DDR1_DQS_DP[01] SSTL I/O DF10 DDR1_DQ[15] SSTL I/O DF12 VSS GND DF18 DDR1_BA[2] SSTL O DF20 DDR1_MA[07] SSTL O DF22 DDR1_MA[05] SSTL O DF24 DDR1_MA[02] SSTL O DF26 DDR1_MA[10] SSTL O DF34 DDR1_DQ[46] SSTL I/O DF36 VSS GND DF38 DDR1_DQ[57] SSTL I/O DF40 DDR1_DQ[63] SSTL I/O Table 8-2. Land List by Land Number (Sheet 31 of Land No. Land Name Buffer Type Direction DF42 VSS GND DF44 VSS GND DF46 VSS GND DF48 VSS GND DF50 VSS GND DF52 VSS GND DF8 VSS GND E1 VSS GND E11 DDR3_DQS_DP[13] SSTL I/O E13 MEM_HOT_C23_N ODCMOS I/O E15 DDR3_CS_N[7] SSTL O E17 DDR3_ODT[2] SSTL O E19 DDR3_BA[1] SSTL O E21 DDR3_MA[01] SSTL O E23 DDR3_MA[12] SSTL O E27 DDR3_DQS_DP[08] SSTL I/O E29 VSS GND E3 VSS GND E31 VSS GND E33 DDR3_DQS_DP[02] SSTL I/O E35 DDR3_DQ[20] SSTL I/O E37 DDR3_DQ[03] SSTL I/O E39 DDR3_DQS_DP[09] SSTL I/O E41 VSS GND E43 DMI_TX_DN[1] PCIEX O E45 DMI_TX_DN[3] PCIEX O E47 DMI_RX_DN[0] PCIEX I E49 DMI_RX_DN[2] PCIEX I E5 VSS GND E51 PE1A_RX_DN[0] PCIEX3 I E53 RSVD E55 PE1A_RX_DP[3] PCIEX3 I E57 RSVD E7 DDR3_DQ[48] SSTL I/O E9 DDR3_DQ[35] SSTL I/O F10 DDR3_DQ[38] SSTL I/O F12 DDR3_DQ[36] SSTL I/O F14 DDR3_CS_N[2] SSTL O F16 DDR3_CS_N[6] SSTL O F18 DDR3_ODT[1] SSTL O F2 TEST2 O F20 DDR3_MA[02] SSTL O F22 DDR3_MA[06] SSTL O F24 DDR3_MA[15] SSTL O Table 8-2. Land List by Land Number (Sheet 32 of Land No. Land Name Buffer Type Direction Datasheet 110 Processor Land Listing F28 DDR3_DQS_DP[17] SSTL I/O F32 DDR3_DQ[19] SSTL I/O F34 DDR3_DQ[17] SSTL I/O F36 VSS GND F38 DDR3_DQ[06] SSTL I/O F4 DDR3_DQ[60] SSTL I/O F40 DDR3_DQ[04] SSTL I/O F42 VSS GND F44 VSS GND F46 RSVD F48 VSS GND F50 VSS GND F52 PE1A_RX_DN[1] PCIEX3 I F54 PE1A_RX_DN[2] PCIEX3 I F56 RSVD F58 RSVD F6 DDR3_DQ[49] SSTL I/O F8 VSS GND G1 VSS GND G11 DDR3_DQS_DN[13] SSTL I/O G13 VCCD_23 PWR G15 DDR3_CS_N[3] SSTL O G17 DDR3_CS_N[5] SSTL O G19 DDR3_CS_N[0] SSTL O G21 DDR3_PAR_ERR_N SSTL I G23 DDR3_MA[09] SSTL O G25 VSS GND G27 DDR3_DQS_DN[08] SSTL I/O G3 DDR3_DQ[56] SSTL I/O G31 VSS GND G33 DDR3_DQS_DN[02] SSTL I/O G35 VSS GND G37 VSS GND G39 DDR3_DQS_DN[09] SSTL I/O G41 VSS GND G43 VSA PWR G45 VSS GND G47 VSS GND G49 VSA PWR G5 VSS GND G51 VSS GND G53 VSS GND G55 PE1A_RX_DN[3] PCIEX3 I G57 VSS GND Table 8-2. Land List by Land Number (Sheet 33 of Land No. Land Name Buffer Type Direction G7 DDR3_DQS_DP[15] SSTL I/O G9 VSS GND H10 VSS GND H12 VSS GND H14 VSS GND H16 VCCD_23 PWR H18 VCCD_23 PWR H2 DDR3_DQ[57] SSTL I/O H20 VCCD_23 PWR H22 VCCD_23 PWR H24 VCCD_23 PWR H28 DDR3_DQS_DN[17] SSTL I/O H32 VSS GND H34 VSS GND H36 DDR3_DQ[15] SSTL I/O H38 VSS GND H4 DDR3_DQ[61] SSTL I/O H40 VSS GND H42 PE1A_TX_DP[0] PCIEX3 O H44 PE1A_TX_DP[2] PCIEX3 O H46 PE1B_TX_DP[4] PCIEX3 O H48 PE1B_TX_DP[6] PCIEX3 O H50 PE3A_TX_DP[0] PCIEX3 O H52 VSS GND H54 VSS GND H56 RSVD H58 RSVD H6 DDR3_DQS_DN[15] SSTL I/O H8 VSS GND J1 DDR_VREFDQRX_C2 3 DC I J11 VSS GND J13 DDR3_DQ[40] SSTL I/O J15 RSVD J17 DDR3_ODT[3] SSTL O J19 DDR3_CS_N[1] SSTL O J21 DDR3_CLK_DN[1] SSTL O J23 DDR3_CLK_DN[0] SSTL O J25 DDR3_CKE[2] SSTL O J27 VSS GND J3 DDR3_DQS_DP[16] SSTL I/O J31 VSS GND J33 VSS GND J35 DDR3_DQ[11] SSTL I/O Table 8-2. Land List by Land Number (Sheet 34 of Land No. Land Name Buffer Type Direction 111 Datasheet Processor Land Listing J37 DDR3_DQS_DP[01] SSTL I/O J39 VSS GND J41 VSS GND J43 PE1A_TX_DP[1] PCIEX3 O J45 PE1A_TX_DP[3] PCIEX3 O J47 PE1B_TX_DP[5] PCIEX3 O J49 PE1B_TX_DP[7] PCIEX3 O J5 VSS GND J51 PE3A_TX_DP[1] PCIEX3 O J53 PE1B_RX_DP[4] PCIEX3 I J55 VSS GND J57 PE1B_RX_DP[6] PCIEX3 I J7 DDR3_DQS_DN[06] SSTL I/O J9 DDR3_DQ[42] SSTL I/O K10 DDR3_DQ[46] SSTL I/O K12 DDR3_DQS_DP[14] SSTL I/O K14 DDR3_DQ[44] SSTL I/O K16 DDR3_CS_N[9] SSTL O K18 DDR3_CS_N[4] SSTL O K2 VSS GND K20 DDR3_CLK_DP[2] SSTL O K22 DDR3_CLK_DN[3] SSTL O K24 DDR3_CKE[0] SSTL O K26 VSS GND K28 VSS GND K30 VSS GND K32 DDR3_DQ[29] SSTL I/O K34 VSS GND K36 DDR3_DQ[14] SSTL I/O K38 DDR3_DQS_DN[10] SSTL I/O K4 DDR3_DQS_DN[16] SSTL I/O K40 DDR3_DQ[13] SSTL I/O K42 PE1A_TX_DN[0] PCIEX3 O K44 PE1A_TX_DN[2] PCIEX3 O K46 PE1B_TX_DN[4] PCIEX3 O K48 PE1B_TX_DN[6] PCIEX3 O K50 PE3A_TX_DN[0] PCIEX3 O K52 PMSYNC CMOS I K54 PE1B_RX_DP[5] PCIEX3 I K56 PE1B_RX_DP[7] PCIEX3 I K58 RSVD K6 DDR3_DQS_DP[06] SSTL I/O K8 VSS GND L1 DDR3_DQ[62] SSTL I/O Table 8-2. Land List by Land Number (Sheet 35 of Land No. Land Name Buffer Type Direction L11 DDR3_DQS_DN[05] SSTL I/O L13 DDR3_DQ[41] SSTL I/O L15 DRAM_PWR_OK_C2 3 CMOS1.5 v I L17 DDR2_BA[1] SSTL O L19 DDR3_ODT[0] SSTL O L21 DDR3_CLK_DP[1] SSTL O L23 DDR3_CLK_DP[0] SSTL O L25 VSS GND L27 DDR3_DQ[27] SSTL I/O L29 VSS GND L3 DDR3_DQS_DN[07] SSTL I/O L31 DDR3_DQ[25] SSTL I/O L33 DDR3_DQ[28] SSTL I/O L35 DDR3_DQ[10] SSTL I/O L37 DDR3_DQS_DN[01] SSTL I/O L39 DDR3_DQ[09] SSTL I/O L41 VSS GND L43 PE1A_TX_DN[1] PCIEX3 O L45 PE1A_TX_DN[3] PCIEX3 O L47 PE1B_TX_DN[5] PCIEX3 O L49 PE1B_TX_DN[7] PCIEX3 O L5 VSS GND L51 PE3A_TX_DN[1] PCIEX3 O L53 PE1B_RX_DN[4] PCIEX3 I L55 PE2A_RX_DP[0] PCIEX3 I L57 PE1B_RX_DN[6] PCIEX3 I L7 DDR3_DQ[54] SSTL I/O L9 DDR3_DQ[43] SSTL I/O M10 DDR3_DQ[47] SSTL I/O M12 DDR3_DQS_DN[14] SSTL I/O M14 DDR3_DQ[45] SSTL I/O M16 DDR3_ODT[5] SSTL O M18 DDR2_MA_PAR SSTL O M2 DDR3_DQ[63] SSTL I/O M20 DDR3_CLK_DN[2] SSTL O M22 DDR3_CLK_DP[3] SSTL O M24 DDR3_CKE[1] SSTL O M26 DDR3_DQ[31] SSTL I/O M28 DDR3_DQ[26] SSTL I/O M30 DDR3_DQS_DN[12] SSTL I/O M32 DDR3_DQ[24] SSTL I/O M34 VSS GND M36 VSS GND Table 8-2. Land List by Land Number (Sheet 36 of Land No. Land Name Buffer Type Direction Datasheet 112 Processor Land Listing M38 DDR3_DQS_DP[10] SSTL I/O M4 DDR3_DQS_DP[07] SSTL I/O M40 DDR3_DQ[12] SSTL I/O M42 VSS GND M44 VSS GND M46 VSS GND M48 RSVD M50 VSS GND M52 VSS GND M54 PE1B_RX_DN[5] PCIEX3 I M56 PE1B_RX_DN[7] PCIEX3 I M6 DDR3_DQ[55] SSTL I/O M8 VSS GND N11 DDR3_DQS_DP[05] SSTL I/O N13 VSS GND N15 VCCD_23 PWR N17 VCCD_23 PWR N19 VCCD_23 PWR N21 VCCD_23 PWR N23 VCCD_23 PWR N25 DDR3_CKE[3] SSTL O N27 DDR3_DQ[30] SSTL I/O N29 DDR3_DQS_DP[03] SSTL I/O N3 DDR3_DQ[58] SSTL I/O N31 DDR3_DQS_DP[12] SSTL I/O N33 VSS GND N35 VSS GND N37 VSS GND N39 DDR3_DQ[08] SSTL I/O N41 VSS GND N43 VSS GND N45 VSA PWR N47 VSS GND N49 VSS GND N5 VSS GND N51 VSA PWR N53 VSS GND N55 PE2A_RX_DN[0] PCIEX3 I N7 DDR3_DQ[50] SSTL I/O N9 VSS GND P10 VSS GND P12 VSS GND P14 VSS GND P16 DDR2_WE_N SSTL O Table 8-2. Land List by Land Number (Sheet 37 of Land No. Land Name Buffer Type Direction P18 DDR2_CS_N[5] SSTL O P20 DDR2_MA[04] SSTL O P22 DDR2_MA[07] SSTL O P24 DDR2_BA[2] SSTL O P26 VSS GND P28 DDR3_DQS_DN[03] SSTL I/O P30 VSS GND P32 VSS GND P34 DDR2_DQ[21] SSTL I/O P36 DDR2_DQ[02] SSTL I/O P38 VSS GND P4 DDR3_DQ[59] SSTL I/O P40 VSS GND P42 DDR_VREFDQTX_C2 3 DC O P44 PE3D_TX_DN[15] PCIEX3 O P46 PE3C_TX_DP[8] PCIEX3 O P48 PE3A_TX_DP[3] PCIEX3 O P50 PE3B_TX_DP[6] PCIEX3 O P52 PE3B_TX_DP[4] PCIEX3 O P54 VSS GND P56 VSS GND P6 DDR3_DQ[51] SSTL I/O P8 VSS GND R11 VSS GND R13 DDR2_DQ[48] SSTL I/O R15 DDR2_MA[13] SSTL O R17 DDR2_BA[0] SSTL O R19 DDR2_MA[01] SSTL O R21 DDR2_MA[06] SSTL O R23 DDR2_MA[09] SSTL O R25 DDR3_CKE[4] SSTL O R27 DDR3_CKE[5] SSTL O R29 VSS GND R3 VSS GND R31 VSS GND R33 DDR2_DQ[17] SSTL I/O R35 VSS GND R37 DDR2_DQ[06] SSTL I/O R39 VSS GND R41 DDR2_DQ[04] SSTL I/O R43 DDR_SDA_C23 ODCMOS I/O R45 PE3C_TX_DP[10] PCIEX3 O R47 PE3A_TX_DP[2] PCIEX3 O Table 8-2. Land List by Land Number (Sheet 38 of Land No. Land Name Buffer Type Direction 113 Datasheet Processor Land Listing R49 PE3B_TX_DP[7] PCIEX3 O R5 VSS GND R51 PE3B_TX_DP[5] PCIEX3 O R53 PRDY_N CMOS O R55 VSS GND R7 VSS GND R9 DDR2_DQ[54] SSTL I/O T10 DDR2_DQ[50] SSTL I/O T12 DDR2_DQS_DP[15] SSTL I/O T14 DDR2_DQ[52] SSTL I/O T16 DDR2_CAS_N SSTL O T18 DDR2_MA[10] SSTL O T20 DDR2_MA[03] SSTL O T22 DDR2_MA[08] SSTL O T24 DDR2_MA[12] SSTL O T26 DDR2_CKE[1] SSTL O T28 VSS GND T30 DDR2_DQ[23] SSTL I/O T32 DDR2_DQS_DN[11] SSTL I/O T34 DDR2_DQ[20] SSTL I/O T36 DDR2_DQ[03] SSTL I/O T38 DDR2_DQS_DN[00] SSTL I/O T4 VSS GND T40 DDR2_DQ[00] SSTL I/O T42 VSS GND T44 PE3D_TX_DP[15] PCIEX3 O T46 PE3C_TX_DN[8] PCIEX3 O T48 PE3A_TX_DN[3] PCIEX3 O T50 PE3B_TX_DN[6] PCIEX3 O T52 PE3B_TX_DN[4] PCIEX3 O T54 PE2A_RX_DP[1] PCIEX3 I T56 PE2A_RX_DP[2] PCIEX3 I T6 VSS GND T8 VSS GND U11 DDR2_DQS_DN[06] SSTL I/O U13 DDR2_DQ[49] SSTL I/O U15 DDR23_RCOMP[0] Analog I U17 DDR2_RAS_N SSTL O U19 DDR2_MA[02] SSTL O U21 DDR2_MA[05] SSTL O U23 DDR2_MA[11] SSTL O U25 DDR2_MA[15] SSTL O U27 DDR2_CKE[2] SSTL O U29 DDR2_DQ[19] SSTL I/O Table 8-2. Land List by Land Number (Sheet 39 of Land No. Land Name Buffer Type Direction U3 DDR2_DQ[60] SSTL I/O U31 DDR2_DQS_DP[02] SSTL I/O U33 DDR2_DQ[16] SSTL I/O U35 VSS GND U37 DDR2_DQ[07] SSTL I/O U39 DDR2_DQS_DP[09] SSTL I/O U41 DDR2_DQ[05] SSTL I/O U43 DDR_SCL_C23 ODCMOS I/O U45 PE3C_TX_DN[10] PCIEX3 O U47 PE3A_TX_DN[2] PCIEX3 O U49 PE3B_TX_DN[7] PCIEX3 O U5 VSS GND U51 PE3B_TX_DN[5] PCIEX3 O U53 PREQ_N CMOS I/O U55 PE2A_RX_DP[3] PCIEX3 I U7 DDR2_DQ[44] SSTL I/O U9 DDR2_DQ[55] SSTL I/O V10 DDR2_DQ[51] SSTL I/O V12 DDR2_DQS_DN[15] SSTL I/O V14 DDR2_DQ[53] SSTL I/O V16 VCCD_23 PWR V18 VCCD_23 PWR V20 VCCD_23 PWR V22 VCCD_23 PWR V24 VCCD_23 PWR V26 VSS GND V28 VSS GND V30 DDR2_DQ[22] SSTL I/O V32 DDR2_DQS_DP[11] SSTL I/O V34 VSS GND V36 VSS GND V38 DDR2_DQS_DP[00] SSTL I/O V4 DDR2_DQ[61] SSTL I/O V40 DDR2_DQ[01] SSTL I/O V42 VSS GND V44 VSS GND V46 VSS GND V48 VSS GND V50 VSS GND V52 TXT_PLTEN CMOS I V54 PE2A_RX_DN[1] PCIEX3 I V56 PE2A_RX_DN[2] PCIEX3 I V6 DDR2_DQ[40] SSTL I/O V8 VSS GND Table 8-2. Land List by Land Number (Sheet 40 of Land No. Land Name Buffer Type Direction Datasheet 114 Processor Land Listing § W11 DDR2_DQS_DP[06] SSTL I/O W13 VSS GND W15 RSVD W17 DDR2_CS_N[8] SSTL O W19 DDR2_ODT[1] SSTL O W21 DDR2_CLK_DN[2] SSTL O W23 DDR2_CLK_DN[3] SSTL O W25 DDR2_MA[14] SSTL O W29 DDR2_DQ[18] SSTL I/O W3 DDR2_DQ[56] SSTL I/O W31 DDR2_DQS_DN[02] SSTL I/O W33 VSS GND W35 DDR2_DQ[29] SSTL I/O W37 VSS GND W39 DDR2_DQS_DN[09] SSTL I/O W41 VSS GND W43 VSS GND W45 VSS GND W47 VSS GND W49 VTTA PWR W5 VSS GND W51 VSS GND W53 VSS GND W55 PE2A_RX_DN[3] PCIEX3 I W7 DDR2_DQ[45] SSTL I/O W9 VSS GND Y10 VSS GND Y12 VSS GND Y14 DDR23_RCOMP[2] Analog I Y16 DDR2_CS_N[7] SSTL O Y18 DDR2_ODT[3] SSTL O Y20 DDR2_ODT[0] SSTL O Y22 DDR2_CLK_DN[1] SSTL O Y24 DDR2_CLK_DN[0] SSTL O Y28 VSS GND Y30 VSS GND Y32 VSS GND Y34 DDR2_DQS_DP[12] SSTL I/O Y36 VSS GND Y38 VSS GND Y4 DDR2_DQ[57] SSTL I/O Y40 VSS GND Y42 VSS GND Y44 PE3D_TX_DP[13] PCIEX3 O Table 8-2. Land List by Land Number (Sheet 41 of Land No. Land Name Buffer Type Direction Y46 PE3C_TX_DP[11] PCIEX3 O Y48 RSVD Y50 PE3B_RX_DP[4] PCIEX3 I Y52 PE3B_RX_DP[5] PCIEX3 I Y54 VTTA PWR Y56 VSS GND Y6 DDR2_DQ[41] SSTL I/O Y8 DDR2_DQS_DP[14] SSTL I/O Table 8-2. Land List by Land Number (Sheet 42 of Land No. Land Name Buffer Type Direction Datasheet 115 Package Mechanical Specifications 9 Package Mechanical Specifications The processor is in a Flip-Chip Land Grid Array (FCLGA12) package that interfaces with the baseboard using an LGA2011-0 socket. The package consists of a processor mounted on a substrate land-carrier. An integrated heat spreader (IHS) is attached to the package substrate and core and serves as the mating surface for processor component thermal solutions, such as a heatsink. Refer to the Processor Thermal Mechanical Specifications and Design Guidelines (see Related Documents section) for complete details on the LGA2011-0 socket. § § Boxed Processor Specifications 116 Datasheet 10 Boxed Processor Specifications 10.1 Introduction Intel boxed processors are intended for system integrators who build systems from components available through distribution channels. The processors (LGA2011-0) are offered as Intel boxed processors; however, the thermal solutions is sold separately. Boxed processors do not include a thermal solution in the box. Intel offers boxed thermal solutions separately through the same distribution channels. Refer to the Processor Thermal Mechanical Specifications and Design Guidelines (see Related Documents section) for a description of Boxed Processor thermal solutions. 10.2 Boxed Processor Contents The Boxed processor and Boxed Thermal Solution contents are outlined below. Boxed Processor ? Processor ? Installation and warranty manual ? Intel Inside Logo Boxed Thermal Solution ? Thermal solution assembly ? Thermal interface material (pre-applied) ? Installation and warranty manual §