• item.taobao.c > Assume a dataset of dimension (n p) with item non-response/mi...
  • Assume a dataset of dimension (n p) with item non-response/mi...

    免费下载 下载该文档 文档格式:PPT   更新时间:2002-07-02   下载次数:0   点击次数:1
    文档基本属性
    文档语言:
    文档格式:ppt
    文档作者:Tanja
    关键词:
    主题:
    备注:
    点击这里显示更多文档属性
    WGCI - Seminar
    Sequential Regression – A Method for Multipe Imputations of Missing Data
    Seminar of the Working Group on Composite Indices
    27 March 2002
    Tanja Srebotnjak, United Nations Statistics Division, 2002
    Procedure:
    A multivariate technique for multiply imputing missing data
    Uses a sequence of regression models
    Developed by T. E. Raghunathan, J. M. Lepkowski, Peter Solenberger and John Van Hoewyk, [University of Michigan]
    Procedure (contd.):
    Assume a dataset of dimension (n p) with item non-response/missingness
    Partition the dataset into n1 variables with no missing obs, say X=(X1,X2,…,Xn1) and (n- n1) with missing values Y=(Y1,Y2,…,Yn-n1)
    Y is ordered by degree of missingness, from least to most
    Procedure (contd.):
    Then, the conditional distribution of Y1, i=1,2,…,n-n1, given the observed values is modeled as a regression model of Yi on X, e.g. E(Y1|X)=X + e
    Missing values are imputed using this model
    Once, Y1 is imputed, it is used as a predictor for Y2, i.e. X=(X1, X2, …, Xn, Y1)
    Procedure (contd.):
    The algorithm continues cycling through this series of regression models (using updated predictor sets until X=(X1,X2,…,Xn1,Y1,…,Yn-n1)
    Now, a new round begins, using the full dataset as predictor for Y1 again, thus updating the regression coefficients
    The algorithm is repeated until convergence in the regression coefficients is achieved, i.e. change below a specified margin
    Procedure (contd.):
    Finally, the missing values for each Yi are imputed using the corresponding converged regression model
    In order to yield multiple imputations, the complete algorithm is repeated m times, resulting in m completed datasets
    The m datasets are analyzed and the results combined to yield final parameter estimates
    Flexibility:
    Basically all model types can be fitted
    Stepwise regressions possible to ensure that only most important predictors enter the model

    下一页

  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 PPT格式下载
  • 您可能感兴趣的
  • item.taobao.com.cn  item.taobao.con  itemtaobao  item点taobao点com  item.beta.taobao.com  itemtaobaocom  搜索itemtaobao  taobaoitemget  itembetataobao