• thesisresults > http://trondhjortelandcom/thesis/node26html
  • http://trondhjortelandcom/thesis/node26html

    免费下载 下载该文档 文档格式:PPT   更新时间:2007-03-02   下载次数:0   点击次数:1
    文档基本属性
    文档语言:
    文档格式:ppt
    文档作者:jim
    关键词:
    主题:
    备注:
    点击这里显示更多文档属性
    Conjugate gradient Method
    Numerical Methods for PDEs
    Spring 2007
    Jim E. Jones
    Computational Science and Engineering Seminar This Friday, March 23, 3 pm, S402
    Dr. Charles Fulton
    Computation of Points of Spectral Concentration for One-Dimensional Schroedinger Equations on the Half Line
    Points of Spectral Concentration are points where the spectral density function has local maxima, and can be computed using recent algorithms for numerical approximation of spectral density functions for the continuous range of the spectrum. In Quantum Chemistry applications these points are related to resonant energies of atoms and molecules.
    Equivalent Problems
    Solve Ax=b, where A is symmetric positive definite (SPD)
    Find x to minimize the quadratic form
    Steepest Descent
    Minimize f in the direction of –f '(x)=r=b-Ax
    Choose a to minimize f
    Steepest Descent Convergence Problems
    Successive search directions (gradients or residuals) are orthogonal. So for a 2x2 matrix, search directions point in one of 2 directions. The method can take a long zig-zag path to the solution.
    Trond Hjorteland : http://trond.hjorteland.com/thesis/node26.html
    Building the Conjugate Gradient Method:
    A-othogonal search directions
    Let's choose a set of search directions {p(0),p(1), …,p(n-1)}
    which are A-orthogonal, that is
    Then the kth step of our method will be to minimize f in the
    direction p(k-1)
    We'll use each direction only once.
    Building the Conjugate Gradient Method:
    picking a to minimize f
    Subtracting true solution x from both sides
    Choose a to minimize f
    Building the Conjugate Gradient Method:
    picking a to minimize f (continued)
    Subtracting true solution x from both sides
    Choose a to minimize f
    Building the Conjugate Gradient Method:
    convergence in n steps
    In the kth step we force the error, e(k), to be A-orthogonal to the (k-1)th search direction, p(k-1). Since future search directions are A-orthogonal to p(k-1) , the error remains A-orthogonal to p(k-1). We have for all j < k

    下一页

  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 PPT格式下载
  • 您可能感兴趣的
  • thesis  parenthesis  pacthesis  thesis复数形式  菲亚特蓝旗亚thesis  蓝旗亚thesis  thesis的复数  thesis复数  tomosynthesis  thesis的意思