• 曲柄连杆机构ppt > 解斜三角形应用举例
  • 解斜三角形应用举例

    免费下载 下载该文档 文档格式:PPT   更新时间:2009-04-01   下载次数:0   点击次数:1
    文档基本属性
    文档语言:
    文档格式:ppt
    文档作者:wangxinmin
    关键词:
    主题:
    备注:
    点击这里显示更多文档属性
    解斜三角形应用举例
    解斜三角形应用举例
    解斜三角形应用举例
    解斜三角形应用举例
    解斜三角形应用举例
    解斜三角形应用举例
    解斜三角形应用举例
    解斜三角形应用举例
    例1.如图,自动卸货汽车采用液压机构,设计时需要计算
    油泵顶杆BC的长度(如图).已知车厢的最大仰角为60°,油
    泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的
    夹角为 ,AC长为1.40m,计算BC的长(保留三个有效数字).
    (1)什么是最大仰角
    最大角度
    最大角度
    最大角度
    最大角度
    (2)例题中涉及一个怎样的三角

    在△ABC中已知什么,要求什么
    例题讲解
    解斜三角形应用举例
    C
    A
    B
    已知△ABC的两边AB=1.95m,AC=1.40m,
    夹角A=66°20′,求BC.
    解:由余弦定理,得
    答:顶杆BC约长1.89m.
    例题讲解
    解斜三角形应用举例
    例题讲解
    例2.如下图是曲柄连杆机构的示意图,当曲柄CB绕C点旋转
    时,通过连杆AB的传递,活塞作直线往复运动,当曲柄在CB
    位置时,曲柄和连杆成一条直线,连杆的端点A在A处,设连
    杆AB长为340mm,由柄CB长为85mm,曲柄自CB按顺时针方
    向旋转80°,求活塞移动的距离(即连杆的端点A移动的距
    离 )(精确到1mm)
    单击图象动画演示
    解斜三角形应用举例
    已知△ABC中, BC=85mm,AB=34mm,∠C=80°,
    求AC.
    解:(如图)在△ABC中,
    由正弦定理可得:
    因为BC∴ B=180°-(A+C)=85°45′
    又由正弦定理:
    例题讲解
    解斜三角形应用举例
    例题讲解
    答:活塞移动的距离为81mm.
    解斜三角形应用举例
    练习:
    解:如图,在△ABC中由余弦定理得:
    A
    我舰在敌岛A南偏西50°相距12海里的B处,发现敌舰正由岛沿北偏西10°的方向以10海里/小时的速度航行.问我舰需以多大速度,沿什么方向航行才能用2小时追上敌舰
    C
    B
    ∴我舰的追击速度为14n mile/h
    解斜三角形应用举例
    练习:
    又在△ABC中由正弦定理得:
    故我舰行的方向为北偏东
    解斜三角形应用举例
    总结
    实际问题
    抽象概括
    示意图
    数学模型
    推理
    演算
    数学模型的解
    实际问题的解
    还原说明
  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 PPT格式下载
  • 您可能感兴趣的
  • 曲柄抽油机ppt  机构的结构分析ppt  凸轮机构ppt  可变气门控制机构.ppt  可变配气定时机构ppt  铰链四杆机构ppt  ppt背景图片  ppt制作教程  ppt背景图片淡雅