• j.chem.phys.104,8627(1996) > J. Serb. Chem. Soc. 78 (11) 1809–1
  • J. Serb. Chem. Soc. 78 (11) 1809–1

    免费下载 下载该文档 文档格式:PDF   更新时间:2014-07-29   下载次数:0   点击次数:1
    J. Serb. Chem. Soc. 78 (11) 1809–1836 (2013) UDC 541.64+678.684:66.095.2.094.3: JSCS–4535 547.53.024:547.551.1 Review 1809 REVIEW Progress in conducting/semiconducting and redox-active oligomers and polymers of arylamines ALEKSANDRA JANO?EVI?1, BUDIMIR MARJANOVI?2, ALEKSANDRA RAKI?3 and GORDANA ?IRI?-MARJANOVI?3* 1Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia, 2Centrohem, Vuka Karad?i?a bb, 22300 Stara Pazova, Serbia and 3Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia (Received 9 August 2013) Abstract: Recent advances in synthesis, characterization and application of the selected conducting/semiconducting and redox-active oligomers and polymers of arylamines are reviewed. A brief historical background of the selected topics is given. The overview of the preparation, structure and properties of poly- aniline, substituted polyanilines, especially those obtained by the oxidative polymerization of p-substituted anilines, poly(1-aminonaphthalene) and its derivatives, carbocyclic and heterocyclic polyaryldiamines such as poly(p-phe- nylenediamine) and polydiaminoacridines, is presented. The mechanism of for- mation of polyaniline nanostructures is discussed. Recent approaches to the preparation of one-dimensional polyaniline nanostructures are concisely reviewed, with special attention paid to the template-free falling-pH method. Current and potential future applications of oligo/polyarylamines are briefly discussed. Keywords: polymer, oligomer, oxidative polymerization, arylamine, polyanil- ine, nanostructure. CONTENTS 1. OXIDATION VERSUS OXIDATIVE POLYMERIZATION OF ARYLAMINES 2. OXIDATIVE POLYMERIZATION OF ANILINE 2.1. Polyaniline nanostructures 3. OXIDATIVE POLYMERIZATION OF SUBSTITUTED ANILINES 3.1. Oxidative polymerization of para-substituted anilines 4. OXIDATIVE POLYMERIZATION OF 1-AMINONAPHTHALENE AND ITS DERIVATIVES 5. OXIDATIVE POLYMERIZATION OF ARYLDIAMINES 5.1. Oxidative polymerization of phenylenediamines *Corresponding author. E-mail: gordana@ffh.bg.ac.rs doi: 10.2298/JSC130809097J 1810 JANO?EVI? et al. 5.1.1. Oxidative polymerization of p-phenylenediamine 5.2. Oxidative polymerization of diaminoacridines 6. CONCLUSIONS AND OUTLOOK 1. OXIDATION VERSUS OXIDATIVE POLYMERIZATION OF ARYLAMINES Chemical oxidations of arylamines can proceed in two different ways.1 Oxi- dants with a relatively high oxidation potential, which do not contain a reactive oxygen atom, can remove electron(s)/hydrogen from the arylamine molecule. The in situ formed reactive species, e.g., arylamine cation radicals, arylnitrenium cations, etc., undergo further reaction with the parent arylamine molecules leading to the formation of arylamine dimers (N–N, N–C, or C–C coupled dimers in the reduced and/or oxidized form), oxidatively cyclized diarylamine products, such as substituted phenazines, and higher linear/branched oligo/polyarylami- nes.1 Oxidants that contain a reactive oxygen atom can either donate an oxygen to the arylamine molecule, thus leading to oxygen-containing products of aryl- amine oxidation (arylhydroxylamine, nitrozoarene, nitroarene, substituted amino- phenols and aminonaphthols, substituted benzoquinones and naphthoquinones, o- aminoaryl sulfate, etc.), and/or remove electron(s)/hydrogen from the arylamine molecule.1 Perphosphoric acid, peroxomonosulfuric acid, and percarboxylic acids are well-known efficient oxygen donors, while Fe(III), Ce(IV), Cu(II), Au(III), Pt(IV), Pd(II) and Ag(I) compounds are frequently used electron acceptors. Oxi- dants such as H2O2 and peroxydisulfate salts behave as both oxygen donors as well as electron acceptors. High temperatures and alkaline conditions are favor- able for the oxygen donor mechanism, whereas low temperatures and acidic con- ditions are favorable for the electron acceptor mode of action of oxidants such as H2O2 and peroxydisulfate. The electrochemical oxidation of arylamines can also lead, depending on the reaction conditions (electrode type, anodic potential, cur- rent density, electrolyte, solvent, pH, temperature, arylamine concentration, etc.) to oxygen-containing monomeric/dimeric products and/or oligo/polyarylamines.1 Depending on the arylamine concentration, the oxidation of the arylamine can lead to its degradation or polymerization.1 Boyland and Sims reported in the 1950s the extension of Elbs peroxydi- sulfate (S2O8 2–) oxidation of phenols in alkaline solution, leading to the pre- valent formation of p-hydroxyaryl sulfates, to the oxidation of arylamines in alkaline solution with S2O8 2–.2?6 Arylamines (Scheme 1, 1) were found to be prevalently converted to the corresponding soluble o-aminoaryl sulfate (Scheme 1, 2) under conditions similar to those used for the Elbs oxidation: room tempe- rature or below, aqueous alkali media, and equimolar quantities of arylamine and S2O8 2–.2?12 Subsequent hydrolysis in highly acidic aqueous solutions leads to corresponding o-aminophenols (Scheme 1, 3). OLIGOMERS AND POLYMERS OF ARYLAMINES 1811 Scheme 1. Boyland–Sims oxidation of aniline (R1=R2=H) and its N-alkyl/aryl-substituted derivatives with S2O8 2-. The involvement of free radical arylamine species (cation radicals and neut- ral radicals), as highly reactive products of single-electron oxidation of aryl- amines, in the formation of the o-aminoaryl sulfates was excluded because radi- cal traps had no effect on the formation of the o-aminoaryl sulfates.7 Arylnitre- nium cations, as initial reactive products of two-electron oxidation of pri- mary/secondary arylamines in acidic as well as alkaline solutions, have not been considered as reactive species involved in the formation of o-aminoaryl sulfates because the knowledge about arylnitrenium cation chemistry became well estab- lished more than four decades after the discovery of the Boyland–Sims oxide- tion.13 Behrman noted that "a nitrene mechanism is not consistent with the fact that tertiary anilines behave in a similar manner to primary anilines".11 Based on the fact that electron-releasing substituents at the aromatic ring accelerate the oxidation of arylamines with S2O8 2–,7 and taking into account some other experi- mental findings,11 Behrman proposed that the nucleophilic SN2 displacement by the arylamine nitrogen on the peroxide oxygen of S2O8 2– represents the rate- determining step of the Boyland–Sims oxidation which leads to the formation of arylhydroxylamine-O-sulfonate intermediates.11 This classic mechanism did not explain the regioselectivity of the Boyland–Sims oxidation and the fact that some arylamines, such as benzidine, cannot be transformed to the corresponding ami- noaryl sulfates by Boyland–Sims oxidation,2 but rather give iminoquinonoid compounds upon two-electron oxidation with S2O8 2–. The yields of aminoaryl sulfates in Boyland Sims oxidation are significantly lower than those of hydroxyaryl sulfates in the Elbs oxidation, especially in the case of primary and secondary arylamines, due to the competitive oxidative poly- merizations of arylamines leading to the formation of insoluble materials, 2?12 which were described in many papers as humic acid-like polymers. Synthetic organic chemists paid no attention to their structural characterization since these precipitates were considered as undesirable by-products in the Boyland–Sims oxidation,2?12 whereas scientists working in the field of conducting polymers became interested in the elucidation of the molecular structure and the mecha- nism of formation of these oligoarylamines, e.g., oligoanilines,14?18 because recent studies had revealed the crucial template function of in situ formed oligo- 1812 JANO?EVI? et al. anilines in the synthesis of polyaniline nanostructures by the oxidative poly- merization of aniline with ammonium peroxydisulfate (APS) under falling pH conditions.14,19?21 Marjanovi? et al.22 recently proposed a revised mechanism of the Boyland– Sims oxidation of arylamines based on the unique role of arylnitrenium cations in the case of primary and secondary arylamines, and arylamine dications and/or immonium cations in the case of tertiary arylamines. The revised mechanism comprehensively explained the formation of soluble aminoaryl sulfates and insoluble oligoarylamines in a manner more consistent with the experimental evi- dence than previous mechanistic schemes. It was revealed that the two-electron transfer between arylamine and peroxydisulfate, accompanied by the deproto- nation, leading to the formation of arylnitrenium cations/arylamine dications/ /immonium cations and sulfate anions, represents the rate-determining step, while the subsequent reaction between arylnitrenium cations/arylamine dicat- ions/immonium cations and sulfate anions represents a regioselectivity-deter- mining step (Scheme 2).22 In accordance with the experimental findings of Boy- land and Sims, it was computationally confirmed by both the AM1 and RM1 semi-empirical quantum chemical methods that the reactions of arylnitrenium cations or arylamine dications/immonium cations with sulfate anions lead to the prevalent formation of o-aminoaryl sulfates.22 The C6–O–SO3 rather than C2–O–SO3 coupled aminoaryl sulfates were also computationally confirmed to be the major products of Boyland–Sims oxidation in the case of meta-substituted anilines that have unsymmetrical ortho positions. Moreover, the computations confirmed the known experimental findings that para substitution occurs if both ortho positions are blocked by substituents. The reactions between arylnitrenium cations and peroxydisulfate in an aqueous solution were found to have regio- selectivities quite similar to those of the reactions between arylnitrenium cations and sulfate; i.e., they lead to the prevalent formation of o-aminoaryl peroxydisul- fates, which undergo rapid reduction to the corresponding o-aminoaryl sulfates (Scheme 2).22 The formation of insoluble precipitates during the Boyland–Sims oxidation of arylamines was explained by the oxidative oligomerization of arylamines, in which the dimerization phase is the reaction of arylamines with arylnitrenium cations (Scheme 2),22 and by the oxidative co-oligomerizations of arylamines with aminoaryl sulfates and aminophenols, formed in the reaction of arylnitre- nium cations/arylamine dications/immonium cations with both hydroxide anions in highly alkaline solution and water molecules in highly dilute aqueous solu- tions.22 Fully oxidized branched oligoarylamines, containing mainly substituted phenazine and iminoquinonoid units with the presence of iminoquinone/phe- noxazine segments, were proposed to constitute the insoluble precipitates in Boy- land–Sims oxidations.22 OLIGOMERS AND POLYMERS OF ARYLAMINES 1813 Scheme 2. Formation of prevalent products (4, 7, 12–14), through the most stable intermediates (5, 6, 9–11), in reactions of the aniline nitrenium cation (8) with SO4 2-, S2O8 2-, aniline, OH- and H2O. Reprinted22 with permission. Copyright (2011) American Chemical Society. 2. OXIDATIVE POLYMERIZATION OF ANILINE Polyaniline (PANI) has been the most extensively studied polyarylamine during the past three decades because of its high electrical conductivity, pro- nounced redox-activity, good environmental stability, simple acid–base doping– 1814 JANO?EVI? et al. –dedoping, ease of preparation by chemical and electrochemical oxidative poly- merization of aniline and its salts, and versatile applicability in various areas of modern technologies, such as rechargeable batteries, sensors and indicators, catalysts, shielding of electromagnetic interference, microwave and radar absorb- ing materials, non-linear optical and light-emitting devices, electron field emit- ters, field-effect transistors, Schottky diodes, erasable optical information sto- rage, digital memory devices, asymmetric films, membranes, electrochemical capacitors (supercapacitors), electrochromic devices, electromechanical actua- tors, electrorheological (ER) fluids, antistatic and anticorrosion coatings, and fuel and solar cells.1,23 PANI has a variety of redox and acid–base forms24 with quite different optical, magnetic, electrical and other properties. The most important form of PANI is the green emeraldine salt, which attains a conductivity of about 1–10 S cm?1 for granular PANI powders,25 ≈102 S cm–1 for PANI powders with nanospherical morphology26 and ≈103 S cm–1 for PANI films.27 Emeraldine salt contains, depending on the preparation method and isolation procedure, various proportions of diamagnetic [(–B–NH+=Q=NH+–B–NH–B–NH–)n](A–)2n and paramagnetic [(–B–NH+?–B–NH–)n](A–)n units; in the preceding formulae B, Q, and A denote a benzenoid ring, a quinonoid ring, and a dopant anion, respecti- vely. Chemical/electrochemical oxidative polymerization of aniline in aqueous solutions of strong acids (pH < 2.0) at room temperature is a typical method for the preparation of conducting PANI emeraldine salt.1,25 Besides APS and Fe(III) compounds as the most frequently used oxidants in PANI syntheses, various other oxidants were recently used, e.g., transition metal compounds such as Mn(III), Mn(IV), Mn(VII), Cr(VI), Ce(IV), V(V) and Cu(II) compounds, KIO3, H2O2, and benzoyl peroxide,1 as well as noble metal compounds such as Au(III), Pt(IV), Pd(II) and Ag(I) compounds.28 Mixtures of oxidants were also used, e.g., FeCl3/H2O2 and KIO3/NaClO.1 In numerous performed oxidative polymerization experiments with "equi- molar" quantities of commercially available aniline and the corresponding acid (which serves as a dopant, enabling the high conductivity of the final PANI emeraldine salt), there was up to a few percent surplus of aniline or acid because researchers assumed incorrectly that used aniline and acid were 100 % pure despite the fact that commercially available aniline is most frequently ≥ 99.0– –99.5 % pure while the majority of employed acids (especially organics, e.g., camphorsulfonic acid) are ≥ 98 % pure. These subtle differences in the initial aniline/acid molar ratio led to significant differences in the initial pH of the oxidative polymerization process, known to have a crucial impact on the poly- merization mechanism and molecular/supramolecular structure of PANI.14,15,19?21,29?35 Since the initial pH of the reaction mixture was usually not recorded, this variation in the initial pH could be the major reason for the pronounced irreproducibility of most of the previously published results in the OLIGOMERS AND POLYMERS OF ARYLAMINES 1815 field of PANI research noticed by MacDiarmid et al.36 who made the well known statement – "there are as many different types of polyaniline as there are people who make it!" Therefore, it could reasonably be expected that the polymerization of purified aniline salts would provide much more reproducible results. Furthermore, it should be noted that the handling of solid aniline salts is much less hazardous than the handling of liquid aniline. Finally, because the anilinium cation is much less oxidizable than the non-protonated aniline mole- cule,29 crystalline aniline salts are much more resistant in comparison with liquid aniline against oxidative degradation by atmospheric oxygen during storage. However, the performed oxidative chemical polymerizations of commercially available aniline salts, such as hydrochloride and sulfate, gave PANI salts that were almost insoluble in common solvents. This lack of solubility limits the processability of ordinary PANI emeraldine salts (chlorides/sulfates), which must be transformed by a dedoping–redoping procedure to a more processable PANI doped with functionalized acids. Many attempts to synthesize processable PANI salts by the oxidation of aniline with S2O8 2– in the presence of various functionalized acids failed because hydrogen sulfate, formed as a by-product during the polymerization (nC6H5NH2 + nS2O8 2– ? (–C6H4NH–)n + 2nHSO4 –), was incorporated into the PANI structure instead of a functionalized dopant anion, especially in the cases of salts of aniline and weak acids.37 Therefore the quest for an aniline salt with functionalized acid which could be directly oxidized with APS or other oxidants to the processable conducting PANI emeraldine salt presents a challenge up to the present time. It was reported that PANI solubility, crystallinity, thermal and electroche- mical stability, and anticorrosive properties were improved using 5-sulfosalicylic acid (SSA) as the dopant.38?41 Conducting PANI–5-sulfosalicylate (PANI–SSA) was successfully prepared by chemical and electrochemical oxidation of aniline in the presence of SSA using a mole ratio [SSA]/[aniline] in the broad range from 0.25 to 10.0.19,30,38,39,41 It was observed that PANI–SSA nanotubes and nano- rods were formed using the ratio [SSA]/[aniline] = 0.25, while granular PANI–SSA was obtained at [SSA]/[aniline] ≥ 0.5.19 Anilinium 5-sulfosalicylate was recently prepared, recrystallized, and polymerized to processable conducting PANI–SSA,42 which had mass-average molar mass and polydispersity index of 22,900 g mol?1 and 2.7, respectively, and exhibited high thermal stability. An elemental analysis and FTIR spectroscopic study of PANI–SSA revealed the doping level and the oxidation state between the emeraldine and protoemeraldine salt, while corres- ponding studies of the PANI base indicated a small extent of covalent bonding of SSA anions to the PANI chains.42 1816 JANO?EVI? et al. 2.1. Polyaniline nanostructures Interest in the study of PANI nanostructures has dramatically increased during the last decade due to the significantly enhanced dispersibility and pro- cessibility as well as substantially improved performance of nanostructured PANI materials in many applications, e.g., sensors, catalysts, electron field emit- ters, field-effect transistors, corrosion protection, data storage, actuators, mem- branes, solar cell devices, rechargeable batteries, fuel cells, ER fluids, Schottky diodes, supercapacitors, electromagnetic interference shielding, microwave absorp- tion and antistatic coatings, in comparison with ordinary granular PANI mate- rials.1,43 PANI nanostructures have also been successfully used as precursors in the process of carbonization leading to the formation of nitrogen-containing car- bon nanomaterials that have versatile applicability.44–57 The formation, mole- cular structure, properties and applications of PANI nanostructures were reviewed during the last several years.1,43,58–67 PANI nanostructures were also reviewed within the frame of review articles devoted to nanostructured conducting poly- mers.68–75 Colloidal PANI nanoparticles (NPs) can be simply prepared by dispersion polymerization of aniline in the presence of various colloidal stabilizers.76 Seve- ral physical methods for the fabrication of PANI nanofibers (NFs) and/or nano- rods (NRs) from granular PANI are known, e.g., electrospinning, ultrasonication, spin coating, and irradiation of the freestanding PANI film with a pulsed electron beam.1,43 Various template methods for the preparation of 1-D PANI nano- structures (NFs, nanowires (NWs), NRs or nanotubes (NTs)) via the oxidative polymerization of aniline, e.g., hard template methods (nanoporous template, nanostructured seed template and the reactive template method) and soft template methods (oligomer-, polymer-, surfactant- and amphiphilic acid-assisted syn- theses) were developed during the last two decades.1,43 Template-free methods, e.g., not-shaken/not-stirred, aqueous/organic interfacial, rapid-mixing and dilute polymerizations; photo-assisted, radiolytic, sonochemical, solid-state mechano- chemical and electrochemical syntheses (voltammetric, potentiostatic, galvano- static, etc.), as well dopant-free, falling-pH, "pH-stat" and hydrophobic surface methods for the synthesis of 1-D PANI nanostructures were also reported in the last decade.1,43 The falling-pH method was the most frequently used template- free method for the preparation of PANI–NTs accompanied with PANI–NRs,19,77 while in some cases, PANI–NRs were prevalently obtained (Fig. 1).78,79 Special attention was paid to the oxidative polymerization of aniline in water without any added acid as the simplest falling-pH method for the preparation of 1-D nanostructured PANI (Fig. 2).14,15,20,21,33,80–89 OLIGOMERS AND POLYMERS OF ARYLAMINES 1817 Fig. 1. SEM (A) and TEM (B) images of PANI 3,5-dinitrosalicylate NRs prepared by the chemical oxidative polymerization of aniline with APS at mole ratios [3,5-dinitrosalicylic acid]/[aniline] = 0.5 and [APS]/[aniline] = 1.25. Adapted51 with permission. Copyright (2012) Elsevier. Fig. 2. TEM image of PANI hydrogensul- fate/sulfate NTs prepared by the chemical oxidative polymerization of aniline with APS in water without any added acid. The cor- responding SEM image is shown in the inset. Adapted85 with permission. Copyright (2011) Elsevier. The molecular structure of nanostructured PANIs obtained by the falling-pH method (starting from slightly acidic or neutral media) is much more complex than that of ordinary PANIs prepared in strongly acidic media (Scheme 3),85 as was predicted by semi-empirical quantum chemical computations29,31,32 and confirmed by spectroscopic data (Fig. 3).14,15,19,78,85 The redox-activity and paramagnetic behavior of nanostructured PANI was frequently confirmed, e.g., in the case of PANI–NRs prepared in the presence of tannic acid (Fig. 4).79 Substantial efforts have been made in order to understand the mechanisms of formation of PANI nanostructures during aniline oxidative polymeriza- tion.1,43,64,65 It was found that PANI–NFs/NWs/NRs are naturally formed during the chemical oxidative polymerization of aniline in acidic aqueous solutions,1,43 whereas PANI–NTs/NFs/NWs/NRs and/or PANI nanosheets are formed by self- 1818 JANO?EVI? et al. assembly under falling-pH conditions.1,43 The theoretical approach of Stejskal et al. to the genesis of PANI nanostructures under falling-pH conditions was based on the oligoaniline-guided self-assembly process,65 while an expanded PANI nanostructure self-assembly model, based on a multi-layered approach incorpo- rating intrinsic PANI morphologies (NFs, nanosheets and NPs) was proposed by Travas-Sejdic et al.64 Scheme 3. Acid–base and redox equilibria between protonated (A and B) and deprotonated (C) oligoaniline/PANI backbones that contain N-phenylphenazine (R=H), substituted N-phenylphenazine (R = oligoaniline), ortho-aminophenyl sulfate, and iminoquinone/4-ami- nophenol units (R = H and/or R = oligoaniline), besides the classic aminophenyl and N-phenyl-1,4-benzoquinonediimine units. Reprinted85 with permission. Copyright (2011) Elsevier. 3. OXIDATIVE POLYMERIZATION OF SUBSTITUTED ANILINES Oxidative polymerization of ring/N-substituted anilines was extensively stu- died during the past three decades. Investigations were focused on the oxidation of ortho/meta- and N-substituted anilines90–98 because it was expected that these monomers could give prevalently N–C4 coupled oligomers/polymers upon oxi- dation, similarly to aniline. Considerable attention was also paid to the oxidative polymerization of para-substituted anilines.99?178 OLIGOMERS AND POLYMERS OF ARYLAMINES 1819 Fig. 3. Raman spectra of oligoaniline intermediate (submicro- and microspheres) and PANI–WPA (submicro- and microspheres / nanorods) produced in the presence of 12-tungs- tophosphoric acid (WPA) at an initial pH 5.7 (weight ratio WPA/aniline = 0.5) with the corresponding SEM images. Bands attributed to phenazine-like segments are seen at 1405 and ≈1630 cm-1. Adapted77 with permission. Copyright (2010) Elsevier. Fig. 4. A) EPR spectrum of PANI–NRs and B) first three consecutive cyclic voltammograms of PANI–NRs deposited on a glassy carbon electrode, recorded in 0.1 M aqueous H2SO4 solution at a sweep rate of 50 mV s-1. PANI–NRs were prepared by the oxidative polymerization of aniline with APS in the presence of tannic acid, at mole ratios [tannic acid]/[aniline] = 0.01, [APS]/[aniline] = 1. Adapted79 with permission. Copyright (2012) Elsevier. 3.1. Oxidative polymerization of para-substituted anilines The oxidative polymerization of para-substituted anilines,99?178 e.g., CH3? (p-toluidine),99?102 CH3CH2?,103 (CH3)3C?,104 C6H5?,105 H2N?C6H4– 1820 JANO?EVI? et al. –(benzidine),106?114 N?C?,104,115 HOOC? (4-aminobenzoic acid),115?119 F?,104,120?122 Cl?,102?104,115,121,123,124 Br?,104,115,121,124 I?,124 H2N? (p-phe- nylenediamine),107,112,125?151 C6H5?NH? (4-aminodiphenylamine),152?163 H2N–C6H4(CH3)? (o-tolidine),164 O2N?,104,115,165 HO? (4-aminophe- nol),166?173 CH3O? (p-anisidine),115 CH3CH2O? (p-phenetidine),115 HO3S? (sulfanilic acid)116,174?176 and H2NO2S?substituted aniline (sulfanilamide),177 was reported. Peroxydisulfates were most frequently used as oxi- dants.102,103,112?114,122,124,129,140?145,153?156,164,165,173 Bromine,126 iodine,140 Fe(III) compounds,103,139,152 metal chelate/O2,138 tetrachloroauric acid,150 H2O2 without catalyst146 and with horseradish peroxidase,147,166 cis-bisgly- cinato-Cu(II)-monohydrate/Co(II)-dionemonoxime,149 silver nitrate151 and sodium dichromate177 were occasionally employed. The enzyme-catalyzed oxidative polymerization of p-substituted anilines was also studied.123,147,148,166 Elec- trochemical oxidative polymerizations were also widely used for the synthesis of poly(p-substituted anilines).99?101,104?111,115?121,127?137,157?163,167?172,174?176 Molar mass distribution measurements revealed that the products of oxidative polymerization of p-substituted anilines were low- to high-molar-mass oligomers rather than polymers. Spectroscopic methods for structural characterization combined with semi- empirical quantum chemical studies of the polymerization mechanisms were proved to be powerful tools in the elucidation of the molecular structures of oligo/poly(substituted anilines).155,178 The course of the oxidation of 4-amino- diphenylamine (4-ADPA) with APS in acidic aqueous ethanol solution as well as the properties of the oxidation products were compared with those of 2-ami- nodiphenylamine (2-ADPA) oxidation.155 Semiconducting oligomers of 4-ADPA and non-conducting oligomers of 2-ADPA of mass-average molar masses of 3,700 and 1,900 g mol–1, respectively, were prepared using an oxidant to mono- mer mole ratio of 1.25. Molecular orbital calculations revealed the prevalence of Nprim–C10 coupling reaction of 4-ADPA, while Nprim–C5 was found to be the main coupling mode between 2-ADPA units. FTIR and Raman spectroscopic studies confirmed the prevalent formation of linear Nprim–C10 coupled oligomers of 4-ADPA and suggested chain branching and formation of phenazine structural units in the oligomers of 2-ADPA. Electroactive paramagnetic ortho-coupled aniline oligomers functionalized with ethyl ester groups were recently synthesized by the oxidation of 4-(ethoxy- carbonyl)aniline, the well known anesthetic benzocaine, with APS in an acidic aqueous medium at room temperature.178 Molecular orbital AM1 and RM1 com- putations, combined with the MM2 molecular mechanics force-field method and the conductor-like screening model (COSMO) of solvation, indicated that oligo- benzocaines contain N–C2 coupled dibenzocaine units as the major structural segments, which can exist in both the reduced (aminobenzenoid) and the oxi- OLIGOMERS AND POLYMERS OF ARYLAMINES 1821 dized (iminoquinonoid) form (Scheme 4). Quantum chemical prediction of ben- zocaine oligomerization pathway was consistent with the results from FTIR spec- troscopic analysis, which confirmed the transformation of the 1,4-disubstituted benzene ring of the monomer to 1,2,4-trisubstituted and 1,2,3,5-tetrasubstituted rings in oligobenzocaines containing unchanged ethoxycarbonyl ester groups (Fig. 5). The FTIR and Raman spectra also proved the presence of phenazine-like units in the benzocaine oligomers, while paramagnetism, caused by the existence of cation radical dibenzocaine structural segments, and electroactivity of the oligo- benzocaines were proved by EPR and cyclic voltammetry, respectively. Scheme 4. Formation of prevalent products (3 and 5) in reactions of benzocaine nitrenium cation (1) with benzocaine and the sulfate anion. Reprinted178 with permission. Copyright (2011) Elsevier. 4. OXIDATIVE POLYMERIZATION OF 1-AMINONAPHTHALENE AND ITS DERIVATIVES Oligomers and polymers of 1-aminonaphthalene179?186 and its derivatives, such as N-phenyl-1-aminonaphthalene,187,188 2-methyl-1-aminonaphthalene,189–191 1,5-diaminonaphthalene,192?194 1,8-diaminonaphthalene,195 5-amino-1-naph- thol,196?205 5-amino-2-naphthol,206 5-amino-1,4-naphthoquinone,207 2-methyl- -5-amino-1,4-naphthoquinone,208,209 2-(5-amino-1-naphthyloxy)acetic acid,210 1822 JANO?EVI? et al. 2-(5-amino-1-naphthyloxy)-2,2-difluoroacetic acid,210 3-(5-amino-1-n-naphthyl- oxy)-1-propanesulfonic acid210 and sodium 4-amino-3-hydroxynaphthalene-1- -sulfonate,211 have received increased attention in the past two decades. These oligomeric/polymeric materials were suggested for application in corrosion pro- tection,204,212,213 sensors,181,182,214?216 electrocatalysts,194,202 adsorbents179 and electrochromic devices.184,196,198 Fig. 5. FTIR spectra of benzocaine and its oligomers produced by chemical oxidative polymerization. The new bands that appeared in the spectrum of the oligomers are marked by arrows; the bands of monomer that disappeared in the spectrum of the oligomers are marked by asterisks. Reprinted178 with permission. Copyright (2011) Elsevier. Semiconducting electroactive polymeric materials that were water soluble, were synthesized by the electrochemical polymerization of sodium 4-amino-3- -hydroxynaphthalene-1-sulfonate (AHNSA–Na) in aqueous solution.211 Gel-per- meable chromatography (GPC) proved the presence of oligomeric chains with molar masses up to ≈6,300 g mol–1 and showed that octamers to dodecamers were the dominant oligomeric species. FTIR and NMR ( 1 H and 13C) spectroscopic findings, which indicated the formation of new covalent bonds on the naphtha- lene ring in poly(AHNSA–Na), were correlated with the prevalent coupling modes of monomeric units determined by PM3 semi-empirical quantum-chemi- OLIGOMERS AND POLYMERS OF ARYLAMINES 1823 cal computations. It was found that poly(AHNSA–Na) contained mainly N–C6 and N–C8 coupled dimer units. The paramagnetic nature of poly(AHNSA–Na) was proved by EPR spectroscopy, while the redox activity was confirmed by cyclic voltammetry. The ratio of the intensity of the two newly formed bands in the UV–vis spectrum, attributed to the polaron (delocalized poly(cation-radical)) and bipolaron form of poly(AHNSA–Na), as well as the presence of naphthoiminoquinonoid and benzenoid segments detected by FTIR and Raman spectroscopes, indicated that partly and fully oxidized bipolaron forms of poly(AHNSA–Na) prevailed. Homopolymers of AHNSA and its salts AHNSA– HCl, AHNSA–Na and AHNSA–Na2, soluble in polar solvents, were also obtained by the standard chemical oxidative polymerization route.217 It was shown that the use of AHNSA salts, instead of AHNSA, leads to polymeric materials with higher w, p, and PDI values. The conductivity of the AHNSA polymers was in the range of 10–5–10–7 S cm–1, poly(AHNSA–HCl) showing the highest value of 1.3*10–5 S cm–1. The IR spectra and elemental analysis combined with MNDO-PM3 quantum chemical calculations revealed that the polymerization proceeded mainly through the oxidation of the amino group in the studied pH range, accompanied by considerable elimination of sulfonic groups. The resulting functional polymers represent polynaphthylamine-like structures with naphtho-iminoquinonoid and benzenoid N–C1, N–C5 N–C6, N–C7, and N– C8 dimer units, bearing free OH and sulfonic groups in the chains. 5. OXIDATIVE POLYMERIZATION OF ARYLDIAMINES Oligomers and polymers of carbocyclic aryldiamines (phenylenediami- nes,107,112,125?151,218 aminodiphenylamines,152?163 diaminonaphthale- nes,192?195,219?223 diaminoanthraquinones,224?228 benzidine,106?114 substituted benzidines164 and naphthidines229) and heterocyclic aryldiamines (diaminopy- ridines,230,231 diaminophenazines,232 diaminoacridines233 and diaminocarbazo- les234) have received increasing attention during the last two decades.235 Molar mass distribution measurements revealed that the products of oxidative poly- merization of aryldiamines are low- to high-molar-mass oligomers rather than polymers. Aryldiamines are susceptible to oxidative polymerization via oxidation of one or both amino groups to give linear poly(aminoarylamines), polymers/oli- gomers containing phenazine units and ladder polyphenazines. Oligo/polyaryl- diamines have shown tunable electroactivity,236 high permselectivity to various electroactive species,237,238 unique electrochromism,239 linear sensitivity of the conductivity to moisture,240 controlled variation of the conductivity with tem- perature241 and an external electric field,242 high sensibilities of polymer-modi- fied electrodes to biosubstances at an extremely low concentration,243,244 good ability in detecting electro-inactive anions,245 pronounced electrocatalytic pro- 1824 JANO?EVI? et al. perties,246,247 effective adsorption of heavy-metal ions,248?252 strong adhesion to metals,253 anticorrosion ability213 and high capacitance.254,255 5.1. Oxidative polymerization of phenylenediamines Polyphenylenediamines are the most frequently studied polyaryldiami- nes.107,112,125?151,218 Phenylenediamines are very susceptible to oxidative poly- merization via the oxidation of one or both amino groups to give linear azopoly- mers, polyaminoanilines, ladder polyphenazines and phenazine/iminoquinonoid- -unit-containing polymers. Molar mass distribution measurements revealed that polyphenylenediamines are low- to high-molar-mass oligomers rather than poly- mers, their molar mass being below 10,000 g mol–1. Due to their complex mole- cular structure, oligo/polyphenylenediamines showed the unique characteristics of redox oligomers and versatile applicability in electrocatalysis, sensors and heavy metal ion removal. Mechanisms of the formation of oligo/polyphenylene- diamines and their structures are still under debate. 5.1.1. Oxidative polymerization of p-phenylenediamine A century ago, it was predicted that the products of a single-electron oxidation of p-phenylenediamine (PDA) are free radicals (Wurster dyes/salts) that may polymerize in a sufficiently concentrated solution at low temperature or in the solid state.125 Chemical112,126,129,138?146,148,150,151 and electrochemi- cal107,127?137 oxidative polymerizations have been widely used for the synthesis of poly(p-phenylenediamine) (PPDA), whereas enzyme-catalyzed oxidative polymerization has been rarely used.148,149 Acidic aqueous solutions were the most frequently applied polymerization media. It should be noted that dissolved aerial oxygen without any catalyst and/or co-oxidant is sufficient for the che- mical oxidative polymerization of PDA. For example, PDA can polymerize in boiling aqueous acetic acid solution to semiconducting PPDA.140 Depending on the synthetic route, there were several proposals for the molecular structure of PPDA, i.e., a ladder structure with phenazine rings,129 an iminoquinonoid Band- rowski base-like structure,145 a linear structure with hydrazo148 and azo bonds,138 and an emeraldine-salt form of PANI.132 The oxidation of PDA with silver nitrate in aqueous solutions of both acetic and nitric acids, using an initial concentration [PDA] = 0.2 M and various [AgNO3]/[PDA] mole ratios in the range from 2.5 to 7.5 was recently found to lead to the formation of highly conducting micro/nanostructured poly(p-phe- nylenediamine)–silver composites (PPDA–Ag), which significantly exceeded the conductivities of PANI–Ag analogs and commercial silver–polymer compo- sites.256 The conductivity of PPDA–Ag composites synthesized in acetic acid were generally much higher than that of composites prepared in nitric acid. The highest conducting PPDA–Ag composite (σ = 13,200 S/cm) containing PPDA in OLIGOMERS AND POLYMERS OF ARYLAMINES 1825 salt form was prepared in 1 M acetic acid using the mole ratio [AgNO3]/[PDA] = = 3.75, whereas the most conducting PPDA–Ag composite (σ = 31,700 S/cm) containing PPDA in base form was prepared using the mole ratio [AgNO3]/ /[PDA] = 7.5.256 The organic component was composed of oligomeric and poly- meric fractions, their proportions varying depending on the employed concentra- tion of AgNO3. In 1 M acetic acid, the formation of a true polymer fraction is marked. Molecular orbital AM1 computations, combined with the MM2 mole- cular mechanics force-field method and COSMO, indicated that PPDA macro- molecules contain both N–C2(6) coupled PDA dimer units and Bandrowski base- like PDA trimer segments, which can exist in both the reduced (aminobenzenoid) and oxidized (iminoquinonoid) forms (Scheme 5).256 The quantum chemical pre- diction of the PDA oligomerization pathway was consistent with the results from FTIR spectroscopic analysis of the samples, which confirmed the partial transfor- mation of 1,4-disubstituted benzene ring of monomer to 1,2,4-trisubstituted, 1,2,3,5-tetrasubstituted, and 1,2,4,5-tetrasubstituted rings in positively charged PPDA chains containing nitrate counter-ions.256 The FTIR and Raman spec- troscopy results also indicated the presence of phenazine-like units and cation radicals in PPDA.256 5.2. Oxidative polymerization of diaminoacridines There is only one report regarding the electropolymerization of ethacridine (2-ethoxy-6,9-diaminoacridine) by potentiostatic and cyclic voltammetric methods,233 however, without any structural characterization of the poly(ethacri- dine) film at the Pt electrode. Glucose oxidase was simultaneously incorporated into the matrixes of the thin poly(ethacridine), which was developed to fabricate a glucose sensor that exhibited good stability and fast amperometric response to glucose.233 Electro-active paramagnetic ethacridine oligomers were recently synthesized by the oxidation of ethacridine lactate with APS in acidic aqueous solution.257 MALDI–TOF MS evidenced the presence of oligo-ethacridine species from dimers up to hexamers. Oligo-ethacridines protonated by both hydrochloric acid and in situ formed sulfuric acid, as revealed by the elemental analysis, were non- conducting (≈6.5?10–9 S cm–1) and had fragmental and submicro/micro-layered morphology. Molecular orbital RM1 computations, combined with the MM2 molecular mechanics force-field method and COSMO, indicated that oligo- ethacridines contained N(C6)–C5 coupled the diethacridine unit as the major structural segment that can exist in both the reduced (aminobenzenoid) and oxi- dized (iminoquinonoid) form (Scheme 6).257 Quantum chemical prediction of the ethacridine oligomerization pathway was consistent with the results from FTIR spectroscopic analysis, which confirmed the oxidative transformation of the NH2(C6) group of the monomer. The formation of oligomers, as well as the presence 1826 JANO?EVI? et al. Scheme 5. A) The oxidation of monoprotonated PDA with Ag+ leading to the formation of [H-PDA]2+ cation radicals and metallic Ag, followed by the recombination of [H-PDA]2+ cation radicals and the formation of the prevalent PDA dimer in the most stable triprotonated form (2) through the deprotonation of the most stable N-C2(6) coupled dimer intermediate (1); B) formation of Bandrowski base PDA trimer. Adapted256 with permission. Copyright (2011) Wiley. OLIGOMERS AND POLYMERS OF ARYLAMINES 1827 Scheme 6. Oxidative dimerization of protonated ethacridine with peroxydisulfate. Reprinted257 with permission. Copyright (2012) Elsevier. of both reduced and oxidized structural units in the oligomers was proved by UV–Vis spectroscopy. FTIR and Raman spectroscopies also proved the presence of phenazine-like units in the ethacridine oligomers. 6. CONCLUSIONS AND OUTLOOK Significant progress in conducting/semiconducting and redox-active oligo- mers and polymers of arylamines, including the well-known polyaniline, was 1828 JANO?EVI? et al. achieved in the 21st century. New important quantum-chemical insights into the mechanism of polymerization of arylamines combined with the rapid develop- ment of knowledge regarding the spectroscopic characteristics of oligo/polyaryl- amines allowed much better elucidation of their molecular structure recently. Considerably increased understanding of the structure-properties relationship of oligo/polyarylamines opened up quite new perspectives regarding the applicabi- lity of these macromolecules in modern technology. Advances in the controlled preparation of various micro/nanostructured oligo/polyarylamines, especially polyaniline nanostructures, give today the opportunity to design new conduct- ing/semiconducting redox-active nanomaterials with exciting properties and enhanced applicability in the fabrication of rechargeable batteries, sensors and indicators, catalysts, microwave and radar absorbing materials, non-linear optical and light-emitting devices, electron field emitters, field-effect transistors, Schot- tky diodes, digital memory devices, asymmetric films, membranes, supercapa- citors, electrochromic devices, electromechanical actuators, electrorheological (ER) fluids, antistatic and anticorrosion coatings, fuel and solar cells. Acknowledgment. The authors thank the Ministry of Education, Science and Techno- logical Development of the Republic of Serbia (Contract OI 172043) for financial support. И З В О Д НАПРЕДАК У ИСТРАЖИВА?ИМА ПРОВОДНИХ/ПОЛУПРОВОДНИХ И РЕДОКС- АКТИВНИХ ОЛИГОМЕРА И ПОЛИМЕРА АРИЛАМИНА АЛЕКСАНДРА ?АНОШЕВИ? 1 , БУДИМИР МАР?АНОВИ? 2 , АЛЕКСАНДРА РАКИ? 3 и ГОРДАНА ?ИРИ?-МАР?АНОВИ? 3 1Фармацеутски факултет, Универзитет у Београду, Во?воде Степе 450, 11221 Београд, 2Центрохем, Вука Кара?и?а бб, 22300 Стара Пазова и 3Факултет за физичку хеми?у, Универзитет у Београду, Студентски трг 12–16, 11158 Београд У овом реви?алном раду приказан ?е напредак остварен у послед?их неколико година у синтези, карактеризаци?и и примени неких проводних/полупроводних и ред- окс-активних олигомера и полимера ариламина. Дат ?е кратак приказ истори?ског раз- во?а по?единих области. Представ?ени су поступци синтезе, структура и сво?ства поли- анилина, супституисаних полианилина, посебно оних доби?ених оксидативном полиме- ризаци?ом пара-супституисаних анилина, поли(1-аминонафталена) и ?егових деривата, карбоцикличних и хетероцикличних полиарилдиамина, као нпр. поли(пара-фенилен- диамина) и полидиаминоакридина. Дискутован ?е механизам формира?а наноструктура полианилина. Недавно разви?ени синтетички поступци за доби?а?е ?еднодимензио- налних наноструктура полианилина су концизно приказани, а посебна паж?а посве?ена ?е методама без темплата. Приказан ?е и кратак преглед актуелних и потенци?алних буду?их примена олиго/полиариламина. (Прим?ено 9. августа 2013) REFERENCES 1. G. ?iri?-Marjanovi?, Synth. Met. 177 (2013) 1 OLIGOMERS AND POLYMERS OF ARYLAMINES 1829 2. E. Boyland, D. Manson, P. Sims, J. Chem. Soc. (1953) 3623 3. E. Boyland, P. Sims, J. Chem. Soc. (1954) 980 4. E. Boyland, P. Sims, D. C. Williams, Biochem. J. 62 (1956) 546 5. P. Sims, J. Chem. Soc. (1958) 44 6. E. Boyland, P. Sims. J. Chem. Soc. (1958) 4198 7. E. J. Behrman, J. Am. Chem. Soc. 89 (1967) 2424 8. J. T. Edward, J. Whiting, Can. J. Chem. 49 (1971) 3502 9. E. J. Behrman, D. M. Behrman, J. Org. Chem. 43 (1978) 4551 10. E. J. Behrman, Org. React. 35 (1988) 421 11. E. J. Behrman, J. Org. Chem. 57 (1992) 2266 12. E. J. Behrman, Beilstein J. Org. Chem. 2 (2006) (10 pages) 13. R. A. McClelland, M. J. Kahley, P. A. Davidse, G. Hadzialic, J. Am. Chem. Soc. 118 (1996) 4794 14. M. Trchová, I. ?eděnková, E. N. Konyushenko, J. Stejskal, P. Holler, G. ?iri?- Marjanovi?, J. Phys. Chem. B 110 (2006) 9461 15. G. ?iri?-Marjanovi?, M. Trchová, J. Stejskal, J. Raman Spectrosc. 39 (2008) 1375 16. J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, Macromolecules 41 (2008) 3530 17. Z. D. Zujovic, L. Zhang, G. A. Bowmaker, P. A. Kilmartin, J. Travas-Sejdic, Macromolecules 41 (2008) 3125 18. S. P. Surwade, V. Dua, N. Manohar, S. K. Manohar, E. Beck, J. P. Ferraris, Synth. Met. 159 (2009) 445 19. A. Jano?evi?, G. ?iri?-Marjanovi?, B. Marjanovi?, P. Holler, M. Trchová, J. Stejskal, Nanotechnology 19 (2008) 135606 20. G. ?iri?-Marjanovi?, V. Dondur, M. Milojevi?, M. Mojovi?, S. Mentus, A. Radulovi?, Z. Vukovi?, J. Stejskal, Langmuir 25 (2009) 3122 21. G. ?iri?-Marjanovi?, Lj. Dragi?evi?, M. Milojevi?, M. Mojovi?, S. Mentus, B. Doj?inovi?, B. Marjanovi?, J. Stejskal, J. Phys. Chem., B 113 (2009) 7116 22. B. Marjanovi?, I. Jurani?, G. ?iri?-Marjanovi?, J. Phys. Chem., A 115 (2011) 3536 23. N. Gospodinova, L. Terlemezyan, Prog. Polym. Sci. 23 (1998) 1443 24. J. Stejskal, P. Kratochvíl, A. D. Jenkins, Polymer 37 (1996) 367 25. J. Stejskal, R. G. Gilbert, Pure Appl. Chem. 74 (2002) 857 26. J. Ha, J. Jang, Appl. Chem. 9 (2005) 73 27. K. Lee, S. Cho, S. H. Park, A. J. Heeger, C.-W. Lee, S.-H. Lee, Nature 441 (2006) 65 28. G. ?iri?-Marjanovi?, Synth. Met. 170 (2013) 31 29. G. ?iri?-Marjanovi?, M. Trchová, J. Stejskal, Collect. Czech. Chem. Commun. 71 (2006) 1407 30. G. ?iri?-Marjanovi?, A. Jano?evi?, B. Marjanovi?, M. Trchová, J. Stejskal, P. Holler, Russ. J. Phys. Chem. A, 81 (2007) 1418. 31. G. ?iri?-Marjanovi?, E. N. Konyushenko, M. Trchová, J. Stejskal, Synth. Met. 158 (2008) 200 32. G. ?iri?-Marjanovi?, M. Trchová, J. Stejskal, Int. J. Quantum Chem. 108 (2008) 318 33. E. N. Konyushenko, J. Stejskal, I. ?eděnková, M. Trchová, I. Sapurina, M. Cieslar, J. Proke?, Polym. Int. 55 (2006) 31 34. E. N. Konyushenko, M. Trchová, J. Stejskal, I. Sapurina, Chem. Pap. 64 (2010) 56 35. J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, P. Holler, Polymer 47 (2006) 8253 1830 JANO?EVI? et al. 36. A. G. MacDiarmid, W. E. Jones Jr., I. D. Norris, J. Gao, A. T. Johnson Jr., N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, M. Llaguno, Synth. Met. 119 (2001) 27 37. J. Stejskal, D. Hlavatá, P. Holler, M. Trchová, J. Proke?, I. Sapurina, Polym. Int. 53 (2004) 294 38. D. C. Trivedi, S. K. Dhawan, Synth. Met. 58 (1993) 309 39. A. Raghunathan, G. Rangarajan, D. C. Trivedi, Synth. Met. 81 (1996) 39 40. S. Tawde, D. Mukesh, J. V. Yakhmi, Synth. Met. 125 (2002) 401 41. G. N. ?iri?-Marjanovi?, B. N. Marjanovi?, M. M. Popovi?, V. V. Pani?, V. B. Mi?kovi?- Stankovi?, Russ. J. Electrochem. 42 (2006) 1358 42. B. Marjanovi?, I. Jurani?, S. Mentus, G. ?iri?-Marjanovi?, P. Holler, Chem. Pap. 64 (2010) 783 43. G. ?iri?-Marjanovi?, Polyaniline nanostructures, in Nanostructured Conductive Poly- mers, A. Eftekhari, Ed., Wiley, London, 2010, p. 19 44. G. ?iri?-Marjanovi?, I. Pa?ti, N. Gavrilov, A. Jano?evi?, S. Mentus, Chem. Pap. 67 (2013) 781 45. S. Mentus, G. ?iri?-Marjanovi?, M. Trchová, J. Stejskal, Nanotechnology 20 (2009) 245601 46. M. Trchová, E. N. Konyushenko, J. Stejskal, J. Kovárová, G. ?iri?-Marjanovi?, Polym. Degrad. Stab. 94 (2009) 929 47. N. Gavrilov, M. Da?i? Tomi?, I. Pa?ti, G. ?iri?-Marjanovi?, S. Mentus, Mater. Lett. 65 (2011) 962 48. B. ?ljuki?, I. Stojkovi?, N. Cvjeti?anin, G. ?iri?-Marjanovi?, Russ. J. Phys. Chem., A 85 (2011) 2406 49. N. Gavrilov, M. Vujkovi?, I. A. Pa?ti, G. ?iri?-Marjanovi?, S. V. Mentus, Electrochim. Acta 56 (2011) 9197 50. A. Jano?evi?, I. Pa?ti, N. Gavrilov, S. Mentus, G. ?iri?-Marjanovi?, J. Krsti?, J. Stejskal, Synth. Met. 161 (2011) 2179 51. A. Jano?evi?, I. Pa?ti, N. Gavrilov, S. Mentus, J. Krsti?, M. Mitri?, J. Travas-Sejdic, G. ?iri?-Marjanovi?, Micropor. Mesopor. Mater. 152 (2012) 50 52. M. Mali?i?, A. Jano?evi?, B. ?ljuki?, I. Stojkovi?, G. ?iri?-Marjanovi?, Electrochim. Acta 74 (2012) 158 53. N. Gavrilov, I. A. Pa?ti, M. Vujkovi?, J. Travas-Sejdic, G. ?iri?-Marjanovi?, S. V. Mentus, Carbon 50 (2012) 3915 54. N. M. Gavrilov, I. A. Pa?ti, G. ?iri?-Marjanovi?, V. M. Nikoli?, M. P. Mar?eta-Kaninski, ?. S. Miljani?, S. V. Mentus, Int. J. Electrochem. Sci. 7 (2012) 6666 55. N. Gavrilov, I. A. Pa?ti, M. Mitri?, J. Travas-Sejdic, G. ?iri?-Marjanovi?, S. V. Mentus, J. Power Sources 220 (2012) 306 56. N. M. Gavrilov, I. A. Pa?ti, J. Krsti?, M. Mitri?, G. ?iri?-Marjanovi?, S. Mentus, Ceram. Int. 39 (2013) 8761 57. M. Vujkovi?, N. Gavrilov, I. Pa?ti, J. Krsti?, J. Travas-Sejdi?, G. ?iri?-Marjanovi?, S. V. Mentus, Carbon 64 (2013) 472 58. J. Huang, R. B. Kaner, Chem. Commun. (2006) 367 59. J. Huang, Pure Appl. Chem. 78 (2006) 15 60. D. Zhang, Y. Wang, Mater. Sci. Eng., B 134 (2006) 9 61. D. Li, J. Huang, R. B. Kaner, Acc. Chem. Res. 42 (2009) 135 62. M. Wan, Macromol. Rapid Commun. 30 (2009) 963 63. P. Liu, L. Zhang, Crit. Rev. Solid State Mater. Sci. 34 (2009) 75 64. C. Laslau, Z. Zujovic, J. Travas-Sejdic, Prog. Polym. Sci. 35 (2010) 1403 OLIGOMERS AND POLYMERS OF ARYLAMINES 1831 65. J. Stejskal, I. Sapurina, M. Trchová, Prog. Polym. Sci. 35 (2010) 1420 66. H. D. Tran, J. M. D'Arcy, Y. Wang, P. J. Beltramo, V. A. Strong, R. B. Kaner, J. Mater. Chem. 21 (2011) 3534 67. J. Wang, D. Zhang, Adv. Polym. Technol. 32 (2013) E323 68. J. Jang, Adv. Polym. Sci. 199 (2006) 189 69. M. Wan, Adv. Mater. 20 (2008) 2926 70. K. Jackowska, A. T. Biegunski, M. Tagowska, J. Solid State Electrochem. 12 (2008) 437 71. H. D. Tran, D. Li, R. B. Kaner, Adv. Mater. 21 (2009) 1487 72. C. Li, H. Bai, G. Shi, Chem. Soc. Rev. 38 (2009) 2397 73. Rajesh, T. Ahuja, D. Kumar, Sens. Actuators, B 136 (2009) 275 74. Y.-Z. Long, M.-M. Li, C. Gu, M. Wan, J.-L. Duvail, Z. Liu, Z. Fa, Prog. Polym. Sci. 36 (2011) 1415 75. Z. Yin, Q. Zheng, Adv. Energy Mater. 2 (2012) 179 76. J. Stejskal, J. Polym. Mater. 18 (2001) 225 77. G. ?iri?-Marjanovi?, I. Holclajtner-Antunovi?, S. Mentus, D. Bajuk-Bogdanovi?, D. Je?i?, D. Manojlovi?, S. Trifunovi?, J. Stejskal, Synth. Met. 160 (2010) 1463 78. A. Jano?evi?, G. ?iri?-Marjanovi?, B. Marjanovi?, M. Trchová, J. Stejskal, Mater. Lett. 64 (2010) 2337 79. A. Jano?evi?, G. ?iri?-Marjanovi?, B. ?ljuki? Paunkovi?, I. Pa?ti, S. Trifunovi?, B. Marjanovi?, J. Stejskal, Synth. Met. 162 (2012) 843 80. H. Ding, M. Wan, Y. Wei, Adv. Mater. 19 (2007) 465 81. N.-R. Chiou, L. J. Lee, A. J. Epstein, Chem. Mater. 19 (2007) 3589 82. H. Ding, J. Shen, M. Wan, Z. Chen, Macromol. Chem. Phys. 209 (2008) 864 83. Y. F. Huang, C. W. Lin, Polymer 50 (2009) 775 84. M. Radoi?i?, Z. ?aponji?, J. Nedeljkovi?, G. ?iri?-Marjanovi?, J. Stejskal, Synth. Met. 160 (2010) 1325 85. A. Raki?, D. Bajuk-Bogdanovi?, M. Mojovi?, G. ?iri?-Marjanovi?, M. Milojevi?-Raki?, S. Mentus, B. Marjanovi?, M. Trchová, J. Stejskal, Mater. Chem. Phys. 127 (2011) 501 86. M. Radoi?i?, Z. ?aponji?, G. ?iri?-Marjanovi?, Z. Konstantinovi?, M. Mitri?, J. Nedeljkovi?, Polym. Compos. 33 (2012) 1482 87. M. Radoi?i?, Z. ?aponji?, I. A. Jankovi?, G. ?iri?-Marjanovi?, S. P. Ahrenkiel, M. I. ?omor, Appl. Catal., B 136–137 (2013) 133 88. M. Radoi?i?, G. ?iri?-Marjanovi?, Z. V. ?aponji?, M. Mitri?, Z. Konstantinovi?, M. Stoiljkovi?, J. M. Nedeljkovi?, J. Mater. Sci. 48 (2013) 5776 89. A. A. Raki?, M. Vukomanovi?, G. ?iri?-Marjanovi?, Chem Pap. in press, doi: 10.2478/s11696-013-0453-2 90. Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, A. G. MacDiarmid, J. Phys. Chem. 93 (1989) 495 91. E. M. Geniès, P. No?l, Synth. Met. 46 (1992) 285 92. M. C. Gupta, S. S. Umare, Macromolecules 25 (1992) 138 93. W.-Y. Zheng, K. Levon Macromolecules 27 (1994) 7754 94. E. Pringsheim, E. Terpetschnig, O. S. Wolfbeis, Anal. Chim. Acta 357 (1997) 247 95. A. Malinauskas, Ber. Bunsen Ges. Phys. Chem. 102 (1998) 972 96. P. A. Kilmartin, G. A. Wright, Synth. Met. 104 (1999) 145 97. A. G?k, B. Sari, M. Talu, Synth. Met. 142 (2004) 41 98. H. D. Tran, I. Norris, J. M. D'Arcy, H. Tsang, Y. Wang, B. R. Mattes, R. B. Kaner, Macromolecules 41 (2008) 7405 99. E. M. Geniès, J. F. Penneau, M. Lapkowski, New J. Chem. 12 (1988) 765 1832 JANO?EVI? et al. 100. M. Leclerc, J. Guay, L. H. Dao, J. Electroanal. Chem. 251 (1988) 21 101. A. Thyssen, A. Hochfeld, R. Kessel, A. Meyer, J. W. Schultze, Synth. Met. 29 (1989) 357 102. E. Pringsheim, E. Terpetschnig, O. S. Wolfbeis, Anal. Chim. Acta 357 (1997) 247 103. E. T. Kang, K. G. Neoh, K. L. Tan, Eur. Polym. J. 30 (1994) 529 104. P. Snauwaert, R. Lazzaroni, J. Riga, J. J. Verbist, Synth. Met. 16 (1986) 245 105. L. H. Dao, M. Leclerc, J. Guay, J. W. Chevalier, Synth. Met. 29 (1989) 377 106. Y. Wei, G. W. Jang, K. F. Hsueh, R. Hariharan, S. A. Patel, C. C. Chan, C. Whitecar, Polym. Mater. Sci. Eng. 61 (1989) 905 107. P. Chandrasekhar, R. W. Gumbs, J. Electrochem. Soc. 138 (1991) 1337 108. F. D'Eramo, A. H. Arévalo, J. J. Silber, L. Sereno, J. Electroanal. Chem. 382 (1995) 85 109. A. Bagheri, M. R. Nateghi, A. Massoumi, Synth. Met. 97 (1998) 85 110. F. D'Eramo, J. J. Silber, A. H. Arévalo, L. E. Sereno, J. Electroanal. Chem. 494 (2000) 60 111. D. Posadas, M. J. R. Presa, M. I. Florit, Electrochim. Acta 46 (2001) 4075 112. B. Rawat, S. S. Kansara, H. S. Rama, Polym. Int. 26 (1991) 233 113. G. M. do Nascimento, V. R. L. Constantino, M. L. A. Temperini, J. Phys. Chem., B 108 (2004) 5564 114. G. M. do Nascimento, P. S. M. Barbosa, V. R. L. Constantino, M. L. A. Temperini, Colloids Surfaces, A 289 (2006) 39. 115. J. Bacon, R. N. Adams, J. Am. Chem. Soc. 90 (1968) 6596 116. C. M. A. Brett, C. Thiemann, J. Electroanal. Chem. 538?539 (2002) 215 117. C. Thiemann, C. M. A. Brett, Synth. Met. 123 (2001) 1 118. A. Benyoucef, F. Huerta, J. L. Vázquez, E. Morallon, Eur. Polym. J. 41 (2005) 843. 119. K.-J. Huang, C.-X. Xu, W.-Z. Xie, W. Wang, Colloids Surfaces, B 74 (2009) 167 120. E. M. Geniès, C. Tsintavis, J. Electroanal. Chem. 195 (1985) 109 121. P. Snauwaert, R. Lazzaroni, J. Riga, J. J. Verbist, Synth. Met. 18 (1987) 335 122. A. H. Kwon, J. A. Conklin, M. Makhinson, R. B. Kaner, Synth. Met. 84 (1997) 95 123. K. E. Simmons, R. D. Minard, J.-M. Bollag, Environ. Sci. Technol. 21 (1987) 999 124. E. T. Kang, K. G. Neoh, K. L. Tan, B. T. G. Tan, Synth. Met. 35 (1990) 345 125. J. Piccard, Liebigs Ann. Chem. 381 (1911) 351 126. L. Michaelis, S. Granick, J. Am. Chem. Soc. 65 (1943) 1747 127. P. J. Elving, A. F. Krivis, Anal. Chem. 30 (1958) 1645 128. K. B. Prater, J. Electrochem. Soc. 120 (1973) 365 129. F. Cataldo, Eur. Polym. J. 32 (1996) 43 130. E. Ekinci, A. A. Karag?zler, A. E. Karag?zler, Synth. Met. 79 (1996) 57 131. J.-J. Xu, H.-Y. Chen, Anal. Biochem. 280 (2000) 221 132. B. Lakard, G. Herlem, S. Lakard, B. Fahys, J. Mol. Struct. THEOCHEM 638 (2003) 177 133. M. H. Pournaghi-Azar, B. Habibi, J. Electroanal. Chem. 601 (2007) 53 134. S. J. Killoran, R. D. O'Neill, Electrochim. Acta 53 (2008) 7303 135. M. Hébert, D. Rochefort, Electrochim. Acta 53 (2008) 5272 136. G. Zhang, A. Zhang, X. Liu, S. Zhao, J. Zhang, J. Lu, J. Appl. Polym. Sci. 115 (2010) 2635 137. S. M. Sayyah, S .S. Abd El-Rehim, M. M. El-Deeb, S. M. Kamal, R. E. Azooz, J. Appl. Polym. Sci. 117 (2010) 943 138. H. C. Bach, Polym. Prepr. 7 (1966) 576. 139. E. Tsuchida, M. Kaneko, Y. Kurimura, Makromol. Chem. 132 (1970) 209 140. W. Qin, X. Zhao, F. Li, Acta Polym. Sin. 4 (1993) 502 141. J. Proke?, J. Stejskal, I. Krivka, E. Tobolkova, Synth. Met. 102 (1999) 1205 OLIGOMERS AND POLYMERS OF ARYLAMINES 1833 142. J. Trlica, P. Sáha, O. Quadrat, J. Stejskal, Physica, A 283 (2000) 337 143. T. Sulimenko, J. Stejskal, J. Prokes, J. Colloid Interface Sci. 236 (2001) 328 144. M.-R. Huang, Q.-Y. Peng, X.-G. Li, Chem. Eur. J. 12 (2006) 4341 145. R. H. Sestrem, D. C. Ferreira, R. Landers, M. L. A. Temperini, G. M. do Nascimento, Polymer 50 (2009) 6043 146. D. Ichinohe, K. Akagi, H. Kise, Synth. Met. 85 (1997) 1671 147. D. Ichinohe, T. Muranaka, T. Sasaki, M. Kobayashi, H. Kise, J. Polym. Sci., A 36 (1998) 2593 148. J. Shan, S. Cao, Polym. Adv. Technol. 11 (2000) 288 149. A. Puzari, J. B. Baruah, React. Funct. Polym. 47 (2001) 147 150. J.-J. Wang, J. Jiang, B. Hu, S.-H. Yu, Adv. Funct. Mater. 18 (2008) 1105 151. P. Bober, J. Stejskal, M. Trchová, J. Proke?, I. Sapurina, Macromolecules 43 (2010) 10406 152. I. S. Yoffe, M. R. Metrikina, Zh. Russ. Fiz.-Chim. Obsch. 62 (1930) 1101 153. T. Hagiwara, T. Demura, K. Iwata, Synth. Met. 18 (1987) 317 154. Y. Ding, A. B. Padias, H. K. Hall, J. Polym. Sci., A 37 (1999) 2569 155. G. ?iri?-Marjanovi?, M. Trchová, E. N. Konyushenko, P. Holler, J. Stejskal, J. Phys. Chem., B 112 (2008) 6976 156. Q. Sun, Y. Deng, Eur. Polym. J. 44 (2008) 3402 157. K. Sasaki, M. Kaya, J. Yano, A. Kitani, A. Kunai, J. Electroanal. Chem. 215 (1986) 401 158. A. Kitani, J. Yano, A. Kunai, K. Sasaki, J. Electroanal. Chem. 221 (1987) 69 159. R. Male, R. D. Allendoerfer, J. Phys. Chem. 92 (1988) 6237 160. E. M. Geniès, J. F. Penneau, M. Lapkowski, A. Boyle, J. Electroanal. Chem. 269 (1989) 63 161. A. Petr, L. Dunsch, J. Phys. Chem. 100 (1996) 4867 162. A. Zimmermann, U. Künzelmann, L. Dunsch, Synth. Met. 93 (1998) 17 163. M. A. Cotarelo, F. Huerta, C. Quijada, R. Mallavia, J. L. Vázquez, J. Electrochem. Soc. 153 (2006) D114 164. G. ?iri?-Marjanovi?, B. Marjanovi?, M. Trchová, P. Holler, Mater. Sci. Forum 494 (2005) 357 165. S. Wang, F. Wang, X. Ge, Synth. Met. 16 (1986) 99 166. M. H. Reihmann, H. Ritter, J. Macromol. Sci., A 39 (2002) 1369 167. S. Taj, M. F. Ahmed, S. Sankarapapavinasam, J. Electroanal. Chem. 338 (1992) 347 168. E. Ekinci, A. A. Karagozler, A. E. Karagozler, Electroanalysis 8 (2005) 571 169. G. Maia, H. A. Menezes, J. Electroanal. Chem. 586 (2006) 39 170. S. N. Vieira, L. F. Ferreira, D. L. Franco, A. S. Afonso, R. A. Gon?alves, A. G. Brito- Madurro, J. M. Madurro, Macromol. Symp. 245?246 (2006) 236 171. A. G. Brito-Madurro, L. F. Ferreira, S. N. Vieira, R. G. Ariza, L. R. G. Filho, J. M. Madurro, J. Mater. Sci. 42 (2007) 3238 172. D. L. Franco, A. S. Afonso, L. F. Ferreira, R. A. Goncalves, J. F. C. Boodts, A. G. Brito- Madurro, J. M. Madurro, Polym. Eng. Sci. 48 (2008) 2043 173. P. Kar, N. C. Pradhan, B. Adhikari, J. Macromol. Sci. A 47 (2010) 282 174. A. Kitani, K. Satoguchi, H.-Q. Tang, S. Ito, K. Sasaki, Synth. Met. 69 (1995) 129 175. C. Thiemann, C. M. A. Brett, Synth. Met. 125 (2002) 445 176. S. A. Kumar, S.-M. Chen, Sensors Actuators, B 123 (2007) 964 177. S. M. Sayyah, H. M. Abd-El Salam, Y. S. Wahba, Int. J. Polym. Mater. 54 (2005) 1133 178. B. Marjanovi?, I. Jurani?, G. ?iri?-Marjanovi?, I. Pa?ti, M. Trchová, P. Holler, React. Funct. Polym. 71 (2011) 704 179. U. Riaz, S. M. Ashraf, Chem. Eng. J. 174 (2011) 546 1834 JANO?EVI? et al. 180. X. Li, C. Sun, Z. Wei, Synth. Met. 155 (2005) 45 181. F. D'Eramo, M. B. Moressi, H. Fernández, M. A. Zón, A. H. Arévalo, L. E. Sereno, A. ?lvarez-Lueje, Electrochim. Acta 55 (2010) 4421 182. Y. Xu, Q. Xie, M. Hu, L. Nie, S. Yao, J. Electroanal. Chem. 389 (1995) 85 183. A. H. Arévalo, H. Fernández, J. J. Silber, L. Sereno, Electrochim. Acta 35 (1990) 741 184. B. K. Schmitz, W. B. Euler, J. Electroanal. Chem. 399 (1995) 47. 185. D. K. Moon, K. Osakada, T. Maruyama, K. Kubota, T. Yamamoto, Macromolecules 26 (1993) 6992 186. G. ?iri?-Marjanovi?, B. Marjanovi?, V. Stamenkovi?, ?. Vitnik, V. Anti?, I. Jurani?, J. Serb. Chem. Soc. 67 (2002) 867 187. S. Dong, Z. Li, Synth. Met. 38 (1990) 381 188. C.-H. Yang, L.-R. Huang, T.-C. Wen, S.-L. Chung, T.-L. Wang, J. Phys. Chem., C 111 (2007) 9227 189. G. ?iri?-Marjanovi?, N. Cvjeti?anin, S. Mentus, J. Budinski-Simendi?, I. Krakovsky, Polym. Bull. 50 (2003) 319 190. G. ?iri?-Marjanovi?, N. Cvjeti?anin, S. Mentus, Spectrosc. Lett. 36 (2003) 151 191. G. ?iri?-Marjanovi?, J. Budinski-Simendi?, I. Krakovsky, Mater. Sci. Forum 453–454 (2004) 139 192. M. Abdel Azzem, U. S. Yousef, D. Limosin, G. Pierre, Synth. Met. 63 (1994) 79 193. M.-C. Pham, M. Oulahyne, M. Mostefai, M. M. Chehimi, Synth. Met. 93 (1998) 89 194. R. Ojani, J.-B. Raoof, S. R. H. Zavvarmahalleh, Electrochim. Acta 53 (2008) 2402 195. N. Oyama, M. Sato, T. Ohsaka, Synth. Met. 29 (1989) 501 196. T. Ohsaka, M. Ohba, M. Sato, N. Oyama, S. Tanaka, S. Nakamura, J. Electroanal. Chem. Interfacial Electrochem. 300 (1991) 51 197. M.-C. Pham, M. Mostefai, M. Simon, P.-C. Lacaze Synth. Met. 63 (1994) 7 198. T. Ohsaka, M. Ohba, M. Sato, N. Oyama, S. Tanaka, S. Nakamura, Synth. Met. 43 (1991) 3089 199. C. P. L. Rubinger, R. L. Moreira, L. A. Cury, G. N. Fontes, B. R. A. Neves, A. Mene- guzzi, C. A. Ferreira, Appl. Surf. Sci. 253 (2006) 543 200. C. P. L. Rubinger, R. L. Moreira, B. R. A. Neves, L. A. Cury, C. A. Ferreira, A. Mene- guzzi, Synth. Met. 145 (2004) 147 201. E. P. Cintra, S. I. Córdoba de Torresi, J. Electroanal. Chem. 518 (2002) 33 202. M.-C. Pham, S. Bouallala, L. A. Lé, V. M. Dang, P.-C. Lacaze, Electrochim. Acta 42 (1997) 439 203. E. P. Cintra, R. M. Torresi, G. Louarn, S. I. Córdoba de Torresi, Electrochim. Acta 49 (2004) 1409 204. A. Meneguzzi, C. A. Ferreira, M. C. Pham, M. Delamar, P. C. Lacaze, Electrochim. Acta 44 (1999) 2149 205. E. P. Cintra, S. I. Córdoba de Torresi, N. Errien, G. Louarn, Macromolecules 36 (2003) 2079 206. M.-C. Pham, M. Mostefai, P.-C. Lacaze, L. H. Dao, Synth. Met. 68 (1994) 39 207. M.-C. Pham, B. Piro, E. A. Bazzaoui, M. Hedayatullah, J.-C. Lacroix, P. Novák, O. Haas, Synth. Met. 92 (1998) 197 208. S. Hubert, M. C. Pham, L. H. Dao, B. Piro, Q. A. Nguyen, M. Hedayatullah, Synth. Met. 128 (2002) 67 209. M. C. Pham, S. Hubert, B. Piro, F. Maurel, H. L. Dao, H Takenouti, Synth. Met. 140 (2004) 183 210. V. George, D. J. Young, Polymer 43 (2002) 4073 OLIGOMERS AND POLYMERS OF ARYLAMINES 1835 211. G. ?iri?-Marjanovi?, M. Trchová, P. Matějka, P. Holler, B. Marjanovi?, I. Jurani?, React. Funct. Polym. 66 (2006) 1670 212. S. Ahmad, S. M. Ashraf, U. Riaz, S. Zafar, Prog. Org. Coat. 62 (2008) 32 213. A. Meneguzzi, M. C. Pham, J. C. Lacroix, B. Piro, A. Adenier, C. A. Ferreira, P. C. Lacaze, J. Electrochem. Soc. 148 (2001) B121 214. F. D'Eramo, J. M. Marioli, A. H Arévalo, L. E. Sereno, Talanta 61 (2003) 341 215. R. Ojani, J.-B. Raoof, P. Salmany-Afagh, J. Electroanal. Chem. 571 (2004) 1 216. S.-S. Huang, H.-G. Lin, R.-Q. Yu, Anal. Chim. Acta 262 (1992) 331 217. G. ?iri?-Marjanovi?, B. Marjanovi?, I. Jurani?, P. Holler, J. Stejskal, M. Trchová, Mater. Sci. Forum 518 (2006) 405 218. R. H. Sestrem, D.C. Ferreira, R. Landers, M. L. A. Temperini, G. M. do Nascimento, Eur. Polym. J. 46 (2010) 484 219. M. A. Rahman, M.-S. Won, N.-H. Kwon, J.-H. Yoon, D.-S. Park, Y.-B. Shim, Anal. Chem. 80 (2008) 5307 220. M.-S. Won, J.-H. Yoon, Y.-B. Shim, Electroanalysis 17 (2005) 1952 221. M. Tagowska, B. Pa?ys, M. Mazur, M. Skompska, K. Jackowska, Electrochim. Acta 50 (2005) 2363 222. A. Nasalska, M. Skompska, J. Appl. Electrochem. 33 (2003) 113 223. S.-Y. Honga, S.-M. Park, J. Electrochem. Soc. 150 (2003) E360 224. M. Gao, F. Yang, G. Zhang, L. Liu, X. Wang, Electrochim. Acta 54 (2009) 2224 225. F. Yakuphanoglu, B. F. ?enkal, Synth. Met. 159 (2009) 311 226. F. Yakuphanoglu, B. F. ?enkal, Polym. Adv. Technol. 19 (2008) 1193 227. M. Gao, F. Yang, X. Wang, G. Zhang, L. Liu, J. Phys. Chem., C 111 (2007) 17268 228. X. G. Li, H. Li, M. R. Huang, Chem. Eur. J. 13 (2007) 8884 229. F. D'Eramo, M. A. Zón, H. Fernández, L. Sereno, A. H. Arévalo, Electrochim. Acta 53 (2008) 7182 230. F. Bakhtiarzadeh, S. Ab Ghani, Electroanalysis 22 (2010) 549 231. B. Shentu, K. Oyaizub, H. Nishide, J. Mater. Chem. 14 (2004) 3308 232. G. ?iri?-Marjanovi?, N. V. Blinova, M. Trchová, J. Stejskal, J. Phys. Chem., B 111 (2007) 2188 233. J.-J. Xu, H.-Y. Chen, Anal. Chim. Acta 423 (2000) 101 234. M. Skompska, M. Chmielewski, A. Tarajko, Electrochem. Commun. 9 (2007) 540 235. X.-G. Li, M.-R. Huang, W. Duan, Y.-L. Yang, Chem. Rev. 102 (2002) 2925 236. G. Pierre, M. Abdel-Azzem, U. S. Yousef, Eur. Polym. J. 34 (1998) 819 237. S. J. Killoran, R. D. O'Neill, Electrochim. Acta 53 (2008) 7303 238. L. J. Murphy, Anal. Chem. 70 (1998) 2928 239. J. Yano, S. Yamasaki, Synth. Met. 102 (1999) 1157 240. K. Ogura, H. Shiigi, M. Nakayama, J. Electrochem. Soc. 143 (1996) 2925 241. A. Puzari, J. B. Baruah, React. Funct. Polym. 47 (2001) 147 242. V. N. Popok, I. A. Karpovich, V. B. Odzhaev, D. V. Sviridov, Nucl. Instrum. Meth. Phys. Res., B 148 (1999) 1106 243. A. A. Abdelwahab, H.-M. Lee, Y.-B. Shim, Anal. Chim. Acta 650 (2009) 247 244. J. C. Vidal, E. Garcia-Ruiz, J. Espuelas, T. Aramendia, J. R. Castillo, Anal. Bioanal. Chem. 377 (2003) 273 245. Q. Xu, C. Xu, Y. Wang, W. Zhang, L. Jin, K. Tanaka, H. Haraguchi, A. Itoh, Analyst 125 (2000) 1453 246. R. Ojani, J. B. Raoof, S. R. H. Zavvarmahalleh, J. Solid State Electrochem. 13 (2009) 1605 1836 JANO?EVI? et al. 247. M. H. Pournaghi-Azar, B. Habibi, J. Electroanal. Chem. 601 (2007) 53 248. J.-J. Wang, J. Jiang, B. Hu, S.-H. Yu, Adv. Funct. Mater. 18 (2008)1105 249. K. Kilian, K. Pyrzynska, React. Funct. Polym. 68 (2008) 974 250. M.-R. Huang, Q.-Y. Peng, X.-G. Li, Chem. Eur. J. 12 (2006) 4341 251. X.-G. Li, M.-R. Huang, S.-X. Li, Acta Mater. 52 (2004) 5363 252. M. Skompska, A. R. Hillman, J. Chem. Soc. Faraday Trans. 92 (1996) 4101 253. L. F. D'Elia, R. L. Ortíz, O. P. Marquez, J. Márquez, Y. Martínez, J. Electrochem. Soc. 148 (2001) C297 254. S. A. Hashmi, S. Suematsu, K. Naoi, J. Power Sources 137 (2004) 145 255. K. Naoi, S. Suematsu, A. Manago, J. Electrochem. Soc. 147 (2000) 420 256. G. ?iri?-Marjanovi?, B. Marjanovi?, P. Bober, Z. Rozlivková, J. Stejskal, M. Trchová, J. Proke?, J. Polym. Sci., A 49 (2011) 3387 257. B. Marjanovi?, I. Jurani?, G. ?iri?-Marjanovi?, M. Mojovi?, I. Pa?ti, A. Jano?evi?, M. Trchová, P. Holler, J. Horsk?, React. Funct. Polym. 72 (2012) 25.
  • 下载地址 (推荐使用迅雷下载地址,速度快,支持断点续传)
  • 免费下载 PDF格式下载
  • 您可能感兴趣的
  • jphyschemc  jchemphys  jchemphys影响因子  jphyschemlett  jphyschemsolids  jphyschemc主页  jphyschemc小木虫  jphyschemb全称  jphyschemb  jphyschema