示意图表示为:
数学模型
- 例1、某计算机集团公司生产某种型号的计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元,分别写出总成本C(万元),单位成本P(万元)、销售收入R(万元)以及利润L(万元)关于总量x(台)的函数关系式。
- 例2、物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则 ,其中 表示
- 环境温度,称 h为半衰期。
- 现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20min,那么降到35℃时,需要多长时间(结果精确到0.1)?
例3、在经济学中,函数 的边际函数 定义为 。某公司每月最多生产100 台报警系统,生 产x台的收入函数为 (单位:元),其成本函数为 (单位:元),利润是收入与成本之差。
(1)求利润函数
及边际利润函数 ;
(2)利润函数 与边际利润函数 是具有相同的最大值?
因此,解决应用题的一般程序是:
①审题:弄清题意,分清条件和结论,理顺数量关系;
②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③解模:求解数学模型,得出数学结论;
④还原:将用数学知识和方法得出的结论,还原为实际问题的意义。
欢迎
谢谢合作
作业
p88
3、4函数模型及其应用(2)
解决应用题的一般程序是:
①审题:弄清题意,分清条件和结论,理顺数量关系;
②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③解模:求解数学模型,得出数学结论;